CENTRAL UNIVERSITY OF KERALA DEPARTMENT OF COMPUTER SCIENCE M.Sc. COMPUTER SCIENCE

CORE COURSE						
COURSE	COURSE TITLE	CONTACT HRS/WEEK			CREDITS	
CODE		LEC	LAB	TUT		
CSC5202	Pattern Recognition	2	2	1	4	

Lec = Lecture, Tut = Tutorial, Lab = Practical

This is a participatory and problem solving skill development course.

Course Objective

The objective of the course is to provide theoretical and practical aspects of pattern recognition.

By completing this course, students will obtain the following course/learning outcomes:

- 1. Knowledge to be gained:
- (i) Knowledge in mathematical and statistical techniques used in pattern recognition
- 2. Skill to be gained:
- (ii) Develop methods and algorithms for pattern recognition applications
- 3. Competency to be gained:

(iii) Model real world pattern recognition problems.

Prerequisites: Basic knowledge in mathematics and statistics.

Grading:

Lab experiments and implementation	- 15%
Class Test	- 10%
Assignment/Quiz/presentation	- 5%
Lab Test	- 10%
Final Exam	-60%

CSC5202 - Pattern Recognition

Module 1

Pattern Recognition Systems – Definitions, data representation, representations of patterns and classes. Types of pattern recognition systems. Applications of pattern recognition systems. Bayesian decision making and Bayes Classifier for continuous and discrete features.

Module 2

Min-max and Neymann-Pearson classifiers, Discriminant functions, decision surfaces. Maximum likelihood estimation and Bayesian parameter estimation. Overview of Nonparametric density estimation – Histogram based approach, classification using Parzen window.

Module 3

K-nearest neighbour estimation and classification. Classification of clustering algorithms – hierarchical clustering – agglomerative clustering. Partitional clustering – Forgy's algorithm. K-means clustering.

Module 4

Introduction to feature selection – filter method – sequential forward and backward selection algorithms. Wrappers method and embedded methods. Feature extraction methods – principal component analysis, fisher linear discriminant analysis, ICA.

References:

- 1. Duda R.O., Hart P.E., Stork D.G., Pattern Classification, John Wiley and Sons, 2nd Edition, 2001
- 2. Bishop C.M., Pattern Recognition and Machine Learning, Springer, 2nd Edition, 2006
- 3. Theodoridis S., Pikrakis A., Koutroumbas K., Cavouras D., *Introduction to Pattern Recognition: A Matlab approach*, Academic Press, 2010