CENTRAL UNIVERSITY OF KERALA DEPARTMENT OF COMPUTER SCIENCE M.Sc. COMPUTER SCIENCE

CORE COURSE						
COURSE	COURSE TITLE	CONTACT HRS/WEEK			CREDITS	
CODE		LEC	LAB	TUT		
CSC5303	High Performance Computing	2	2	1	4	

Lec = Lecture, Tut = Tutorial, Lab = Practical

This is a participatory and problem solving skill development course.

Course Objective:

The objective of the course is to provide theoretical and practical aspects of implementing high performance computing.

By completing this course, students will obtain the following course/learning outcomes:

- 1. Knowledge gained:
- (i) in-depth concepts of high performance computing
- 2. Skill gained:
 - (ii) Skills in solving computationally intense problems using parallel algorithms
- 3. Competency gained:
 - (iii) Computational modelling of parallel algorithms using OpenMP, pthread and MPI

Prerequisites: Basic knowledge in programming.

Grading:

Lab implementation	- 12%
Participatory based group Project	- 10%
Assignment/Quiz/presentation	-8%
Class Test	-10%
Final Exam	-60%

CSC5303 – High Performance Computing

Module 1

The von Neumann architecture, Modifications to the von Neumann Model – Caching, Virtual memory, instruction level parallelism, hardware multithreading, motivation and scope of parallel computing, Flynn's taxonomy.

Module 2

Sources of overhead in parallel programs, performance metrics for parallel systems, speedup & efficiency, Amdahl's law, foster's design methodology.

Module 3

Thread Basics, the POSIX thread API, Thread Creation and Termination, Synchronization Primitives in Pthreads, thread cancellation.

Module 4

The shared memory model, types of OpenMP constructs, OpenMP compiler directives, parallel constructs, work-sharing construct, combined parallel work-sharing constructs, synchronization directives, combining MPI and OpenMP.

Module 5

Principles of Message-passing, send and receive operations, message passing interface (MPI), and case studies.

References:

- 1. Hesham El-Rewini and Mostafa Abd-El-Barr, *Advanced Computer Architecture and Parallel Processing*, John Wiley & Sons, Inc Publication, 2005.
- 2. Peter S. Pacheco, An introduction to parallel programming, Elsevier Inc., 2011
- 3. Anantha Grama, Anshul Gupta, George Karypis, Vipin Kumar, Introduction to Parallel Computing, Addison Wesley, 2003.
- 4. Michael J. Quinn, Parallel programming in C with MPI and OpenMP, MC Graw Hill, 2003