CENTRAL UNIVERSITY OF KERALA DEPARTMENT OF COMPUTER SCIENCE M.Sc. COMPUTER SCIENCE

CORE COURSE						
COURSE	COURSE TITLE	CONTACT HRS/WEEK			CREDITS	
CODE		LEC	LAB	TUT		
CSC5203	Computer Graphics and Visualization	2	2	1	4	

Lec = Lecture, Tut = Tutorial, Lab = Practical

This is an experimental and problem solving skill development course.

Course Objective

The objective of the course is to provide theoretical and practical aspects of computer graphics.

By completing this course, students will obtain the following course/learning outcomes:

- 1. Knowledge gained:
 - (i) Mathematical concepts of computer graphics and visualization
- 2. Skill gained:
 - (ii) modelling of 2D and 3D transformations.
 - (iii) Projection from 3D to 2D
 - (iv) Implementing Clipping algorithms.
- 3. Competency gained:
 - (v) Development of algorithms for various techniques in computer graphics

Prerequisites: Basic knowledge in mathematics.

Grading:

- 10%
- 5%
- 10%
-60%

CSC5203 - Computer Graphics and Visualization

Module 1

History of computer graphics. Introduction to OpenGL. Raster algorithms – DDA and Bresenham's line drawing algorithms, Circles and Ellipse drawing algorithms.

Module 2

Geometric transformation in 2D space – translation, rotation, scaling, reflection. Homogenous co-ordinates and Composite transformation. Affine transformation. Two Dimensional Viewing transformation – Line/Polygon Clipping.

Module 3

Geometric transformation in 3D space - translation, rotation, scaling, reflection. Projections.

Module 4

 $Knowledge \ about \ Visible-Surface \ Detection. \ OpenGL \ light and material \ properties \ and \ models. \ Color \ Models \ and \ Color \ Applications: \ RGB - YIQ - CMY - HSV.$

Reference:

- 1. Donald Hearn and M. Pauline Baker, 'Computer Graphics C Version', Prentice Hall of India, Second Edition, 1997
- 2. Hill, Francis S., Computer Graphics Using OpenGL, Prentice-Hall, 2001.
- 3. Sumanta Guha, Computer Graphics through OpenGL, CRC Press, 2011.
- 4. D.D. Hearn, M.P. Baker, Computer Graphics with OpenGL, 4/e, pearson, 2011
- 5. Dave Shreiner, "OpenGL Programming Guide: The Official Guide to Learning OpenGL, Versions 3.0 and 3.1", Addison Wesley, 7th Ed., 2009