CENTRAL UNIVERSITY OF KERALA DEPARTMENT OF COMPUTER SCIENCE M.Sc. COMPUTER SCIENCE

ELECTIVE COURSE						
COURSE	COURSE TITLE	CONTACT HRS/WEEK CREDITS			CREDITS	
CODE		LEC	LAB	TUT		
CSC5005	Nature Inspired Computing	2	2	1	4	

Lec = Lecture, Tut = Tutorial, Lab = Practical

This is a participatory and problem solving skill development course.

Course Objective:

The objective of the course is to provide theoretical and practical aspects of implementing nature inspired computing.

By completing this course, students will obtain the following course/learning outcomes:

- 1. Knowledge gained:
 - (i) fundamental concepts of nature inspired computing
- 2. Skill gained:
 - (ii) Skills in the development of algorithms for nature inspired computing
- 3. Competency gained:
 - (iii) optimization of real world problems using nature inspired computing

Prerequisites: Basic knowledge of programming

Grading:

Lab implementation	- 15%
Participatory based group Project	- 10%
Assignment/Quiz/presentation	- 5%
Class Test	- 10%
Final Exam	- 60%

CSC5005 – Nature Inspired Computing

Module 1

Natural to Artificial Systems – Biological Inspirations in problem solving – Behavior of Social Insects: Foraging - Division of Labor - Task Allocation – Cemetery Organization and Brood Sorting – Nest Building - Cooperative transport.

Module 2

Ant Colony Optimization: Ant Behavior - Towards Artificial Ants - Ant Colony Optimization - Problem solving using ACO - Extensions of Ant Systems - Applications.

Module 3

Swarm Intelligence: Introduction to Swarm Intelligence - Working of Swarm Intelligence - Optimization - Particle Swarms - Applications

Module 4

Introduction to Genetic Algorithms - population initialization - choosing a fitness function - selection - crossover - mutation - reinsertion - applications of genetic algorithms - evolutionary algorithms.

Module 5

Case studies in Immune System Algorithms, Simulated Annealing

Text Books

- 1. Stephan Olariu and Albert Zomaya, Hanbook of Bioinspired Algorithms and Appl., Chapman and Hall, 2006
- 2. Marco Dorigo, Thomas Stutzle, Ant Colony Optimization, MIT Press, 2004.
- 3. E. Bonabeau, Marco Dorigo, Guy Theraulaz, Swarm Intelligence: From Natural to Artificial Systems, Oxford Univ. press, 2000.
- 4. Mitchell, Melanie, Introduction to genetic algorithms, ISBN: 0262133164, MIT Press, 1996
- 5. Nunes de Castro, Leandro, Fundamentals of Natural Computing: Basic Concepts, Algor., and Appl., Chapman & Hall, 2006

Reference Books

- 1. Nunes de Castro, Leandro, Fernando J. Von Zuben, Recent Developments in Biologically Inspired Computing, MIT Press, 2005
- 2. D. Floreano and C. Mattiussi, Bio-Inspired Artificial Intelligence, MIT Press, 2008
- 3. Camazine, Scott et al, Self-organization in biological systems, ISBN: 9780691116242, Princeton Univ. Press, 2001
- 4. Nancy Forbes, *Imitation of Life How Biology Is Inspiring Computing*, MIT Press, 2004.
- 5. Christian Blum, Daniel Merkle (Eds.), Swarm Intelligence: Introduction and Applications, Springer Verlag, 2008.
- 6. Leandro N De Castro, Fernando J Von Zuben, Recent Developments in Biologically Inspired Computing, Idea Group Inc., 2005.