CENTRAL UNIVERSITY OF KERALA DEPARTMENT OF COMPUTER SCIENCE M.Sc. COMPUTER SCIENCE

ELECTIVE COURSE							
COURSE	COURSE TITLE	CONTACT HRS/WEEK			CREDITS		
CODE		LEC	LAB	TUT			
CSC5008	Computational Biology	2	2	1	4		

Lec = Lecture, Tut = Tutorial, Lab = Practical

This is a participatory, experimentally and problem solving skill development course.

Course Objective:

The objective of the course is to provide theoretical and practical aspects of developing computational techniques needed for biology.

Bv	completing this course.	students will	obtain	the follo	wing o	course/l	earning	outcomes:
	· · · · · · · · · · · · · · · · · · ·						8	

- 1. Knowledge gained:
 - (i) mathematical concepts of computational biology
- 2. Skill gained:
 - (ii) Critical analyzing and logic skills in developing computational algorithms.
- 3. Competency gained:
 - (iii) Computational biology modelling and applications

Prerequisites: Basic knowledge of programming

Grading:

Lab implementation	- 15%
Participatory based group Project	- 10%
Assignment/Quiz/presentation	- 5%
Class Test	- 10%
Final Exam	-60%

CSC5008 - Computational Biology

Module 1

Introductory Molecular Biology, DNA Analysis, Regulatory Motifs in DNA Sequences, Finding Motifs, Greedy Approach to Motif finding, Longest Common Subsequences, Global and Local Sequence Alignments, Multiple Alignment

Module 2

Gene Prediction, Constructing Algorithms in sub quadratic time, Shortest Superstring Problem

Module 3

Sequencing by Hybridization, Protein Sequencing and Hybridization, Spectrum Graphs, Spectral Convolution, Repeat Finding, Hash Tables, Keyword Trees, Suffix Trees and its Applications

Module 4

Approximate Pattern Matching, Hierarchical Clustering, Evolutionary Trees, Parsimony Problem, Hidden Markov Models, Applications of HMM.

Text books:

1. N. C. Jones, P. A. Pevzner, An Introduction to Bioinformatics Algorithms, MPI Press, 2004.

2. D. W. Mont, Bioinformatics: Sequence and Genome Analysis, CSHL Press, 2004.

Reference Books:

3. D. Gusfield, Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology, Cambridge University Press, 1997.