Minutes of the meeting of Board of Studies in Plant Science

Date: 15-4-2019 Time 10 .00 AM to 5.00 PM Venue: Department of Plant Science, Central University of Kerala, Periye-671316

Ref. CUK/ACA/BoS/187/2013/2019/1714/E5566 dated 05th February 2019

As per the CUK letter cited, Board of studies meeting was conduced on 15-4-2019 from 10. 00 AM to 5.00 PM with the following members.

Members present Dr. K. Arunkumar Chairman, PLS-BOS Prof. (Dr.) T. Parimelazhagan Expert-Member, Department of Botany Bharathira University, Coimbatore Prof. (Dr.) G. R. Janardhana Expert-Member, Department of Botany University of Mysore Mysore Prof. (Dr.) V. Sivaram Expert-Member, Department of Botany Bangalore University Bangarore

Prof. Dr. T. Dennis Thomas Member Dr. K. Ramachandran Member

Dr. Ginny Antony Member

Draft syllabus submitted by the Department of Plant Science was thoroughly gone through and discussed based on the CUK CBCS regulations. Accordingly the board unanimously passed the following resolutions.

- Resolved to approve the proposed syllabus for M.Sc Plant Science programme to be adopted from the Academic year 2019-2020.
- > Specific Textbooks of 10 to 15 are limited to each course.
- > The credits for core courses were decided as 60 credits and 12 credits for elective courses.
- > Accordingly 13 core courses each carry 4 credits were finalized
- Suggestions in the course content by the expert members were included and coursers were accordingly revised.
- Recent topics in all courses were included as per the expert suggestions.

71514119

Dr. K. Arunkumar Chairman, PLS-BOS

Prof. (Dr.) T. Parimelazhagan Expert-Member Prof. (Dr.) G. R. Janardhana (4)

Prof. (Dr.) V. Sivaram Expert-Member Prof. Dr. T. Dennis Thomas 19 Member

Dr. K. Ramachandran Member

Dr. Ginny Antony Member

	PLANT BIOTECHNOLOGY AND PLANT GENETIC	
BTY 5208	ENGINEERING	
	(Credits 4; Theory 4 hrs; Practical 3 hrs)	
Δim	To study recombinant DNA (rDNA) technology and plant genetic	
	engineering and, their application in plant biotechnology	
Objectives	To Study about various vectors and DNA modifying enzymes	
	used in rDNA technology	
	To study how molecular cloning is done and its application	
	To study various methods of plant transformation	
	To understand the importance and applications	
	of plant biotechnology	
	To study the biosafety methods, laws, ethical issues	
	of rDNA technology and IPR	
Loarnin	information on	
Learnin	\rightarrow what is rDNA technology and how it can be used in	
g	plants to generate better traits	
	 Its applications, biosafety, legal and ethical issues 	
с -		
S.No.	Theory	
1.	Vectors in molecular cloning:	
	Plasmids, phages, phagemids, hybrid vectors, cosmids,	
	eukaryotic virus- based vectors, shuttle vectors, expression	
	vectors (especially plant expression vectors), fosmids, PACs,	
	BACs and YACs.	
	Molecular cloning:	
2.	Steps - amplification, restriction digestion, ligation,	
	transformation, screening.	
	Special molecules and enzymes for DNA modifications - restriction	
	enzymes, ligases, klenow, phosphatases, recombinases,	
	modification of DNA fragments using linkers, adaptors and	
	homopolymer tailing.	
	Recombination based cloning.	
3.	Introducing genes into prokaryotes:	
	Indistormation, transduction, conjugation, electroporation.	
4.	Identifying the right clone:	
	insertional inactivation of marker genes.	
	Molocular scrooping DCP colony and dot blot hybridization	
	nucleic acid hybridization and immunological techniques	
5.	Applications of rDNA technology in biotechnology.	
	Genomic and cDNA libraries isolation of important genes	
	Construction of gene cassette, protein engineering	
	bioprocessing, phytoremediation.	
	agriculture.	

Gene	transfer to plants:
Tissu	e culture in plant genetic engineering
. Integ	rative DNA transfer - direct transformation methods.
6. Agrol	pacterium-based methods. Organelle engineering.
Non-i	ntegrative DNA transfer - Plant viruses and Protoplast
fusio	Molecular and functional analysis of transgenic
nlant	
Biote	chnological applications of plant genetic engineering.
Funct	ional genomics, resistance to abiotic and biotic stresses.
7 crop	quality improvement, nutrient enhancement, nitrogen
fixati	on nutrition un-take production of male sterile lines
nlant	ibodies vaccines commercial oils plant secondary
produ	intersection in the secondary secondary in the secondary
Haza	rds and impact of GMOs:
Biosa	fety considerations. Biosafety regulations in India.
8 Ethic	al issues, biological risks, impact on biodiversity, controlled
trials	F Conomic issues, legal issues, intellectual property rights
(IPR)	in relation to plant biotechnology.
S. No. Labo	ratory/Practical
Plasm	nid restriction digestion and gel electrophoresis to
study	DNA mobility, stoichiometry, deciding factors for
1. perce	entage of agarose/polyacrylamide, importance of DNA
mark	er, band size
calcu	lation, etc.
, Isolat	ion of vector plasmid and, plasmid with insert/ or PCR
Z. produ	ict, for
clonii	ng
, Prepa	ration of vector and insert by restriction digestion and
s. elutio	on, for
clonii	ng
4. Ligat	ion for cloning
5. Prepa	aration of competent cells and transformation
6 Work	ing out problems on how to calculate restriction-digested
band	size and construction of to-the-scale plasmid map
7. Agrol	pacterium-mediated plant transformation - preincubation
8. Agrol	pacterium-mediated plant transformation - infection
9. Agrol	pacterium-mediated plant transformation - selection
10. GUS of	or GFP detection
11. Gene	amplification using PCR and its confirmation using gel
elect	rophoresis
12. South	ern blotting and transfer

Text Books:

1. Primrose SB, Twyman R. 2016. Principles of Gene Manipulation and Genomics, 8th edition. Wiley-Blackwell.

- 2. Brown TA. 2016. Gene Cloning and DNA Analysis: An Introduction, 7th edition. Wiley- Blackwell.
- 3. Cooper G. 2018. The Cell: A Molecular Approach, 8th edition. Sinauer Associates.
- 4. Glick BR, Patten CL. 2017. Molecular Biotechnology: Principles and Applications of Recombinant DNA, 5th edition. ASM Press.
- 5. Bourgaize D, Jewell TR, Buiser RG. 1999. Biotechnology: Demystifying the Concepts, 1st edition. Benjamin Cummings.
- 6. Nicholl DST. 2008. An Introduction to Genetic Engineering, 3rd edition. Cambridge University Press.
- 7. Gelvin SB, Schilperoort RA. (Eds.). 2000. Plant Molecular Biology Manual. Springer.
- 8. Clark, Melody S. (Eds.). 1997. Plant Molecular Biology A Laboratory Manual. Springer.
- 9. Dale JW, Schantz MV, Plant N. 2011. From Genes to Genomes: Concepts and Applications of DNA Technology, 3rd edition. Wiley.
- 10. Shah JM. 2012. Strategies to overcome fungal diseases in plants: An enchiridion. Lambert Academic Publishing AG & Co.
- 11. Kshitij Kumar Singh. 2015. Biotechnology and Intellectual Property Rights: Legal and Social Implications. Springer.
- 12. Erbisch FH, Maredia K (Eds.). 2003. Intellectual Property Rights in Agricultural Biotechnology, 2nd edition. CABI Publishing.
- 13. Parashar S, Goel D. 2013. IPR, Biosafety and Bioethics. Pearson India.