Minutes of the meeting of Board of Studies in Plant Science

Date: 15-4-2019 Time 10 .00 AM to 5.00 PM Venue: Department of Plant Science, Central University of Kerala, Periye-671316

Ref. CUK/ACA/BoS/187/2013/2019/1714/E5566 dated 05th February 2019

As per the CUK letter cited, Board of studies meeting was conduced on 15-4-2019 from 10. 00 AM to 5.00 PM with the following members.

Members present Dr. K. Arunkumar Chairman, PLS-BOS Prof. (Dr.) T. Parimelazhagan Expert-Member, Department of Botany Bharathira University, Coimbatore Prof. (Dr.) G. R. Janardhana Expert-Member, Department of Botany University of Mysore Mysore Prof. (Dr.) V. Sivaram Expert-Member, Department of Botany Bangalore University Bangarore

Prof. Dr. T. Dennis Thomas Member Dr. K. Ramachandran Member

Dr. Ginny Antony Member

Draft syllabus submitted by the Department of Plant Science was thoroughly gone through and discussed based on the CUK CBCS regulations. Accordingly the board unanimously passed the following resolutions.

- Resolved to approve the proposed syllabus for M.Sc Plant Science programme to be adopted from the Academic year 2019-2020.
- > Specific Textbooks of 10 to 15 are limited to each course.
- > The credits for core courses were decided as 60 credits and 12 credits for elective courses.
- > Accordingly 13 core courses each carry 4 credits were finalized
- Suggestions in the course content by the expert members were included and coursers were accordingly revised.
- Recent topics in all courses were included as per the expert suggestions.

71514119

Dr. K. Arunkumar Chairman, PLS-BOS

Prof. (Dr.) T. Parimelazhagan Expert-Member Prof. (Dr.) G. R. Janardhana (4)

Prof. (Dr.) V. Sivaram Expert-Member Prof. Dr. T. Dennis Thomas 19 Member

Dr. K. Ramachandran Member

Dr. Ginny Antony Member

BTY 5005	GENOME STABILITY AND DNA REPAIR
Aim	(Credits 2 ; Theory 2 hrs) To understand the basis of genomic stability, mutations, their cause,
Objectives	 repair and methods of screening To study the types of mutations and their causes To study how DNA mutations are repaired To study different methods used to screen mutations To know how to select appropriate method to screen mutations
Learning outcome	 Mutations are the cause of evolution, biodiversity increase and, many genetic disorders. students after completion of this course will know > different types of mutations and their repair > methods to screen mutations and importantly, select the appropriate method.
	Theory
1.	Mutagens and mutations: Biochemical basis of mutations and mutagens Types of mutations - ploidy changes, chromosomal aberrations such as additions, deletions, translocations, duplications, inversions, molecular mutations such as point mutations and frame-shift mutations, recombinations (at chromosome and DNA level), trinucleotide-repeat expansion, mutational hot spots
2.	Transposons and retrotransposons as mutagens: Historical background of transposons Structure of typical transposons and types of transposons and retrotransposons Genetic and evolutionary significance, implications in genome plasticity
3.	DNA repair: Types of DNA repair in prokaryotes and eukaryotes DNA recombination models
4.	Screening of mutations: Techniques to screen chromosomal mutations, based on microscopy, flow cytometry and hybridisation Techniques to screen molecular mutations, in prokaryotes and eukaryotes, based on PCR, real time PCR, electrophoresis, arrays, sequencing, Ames test, eukaryotic detector mutants Absolute and relative quantification of mutations Advantages and disadvantageous of the techniques

Text Books:

- 1. Watson JD, Tania AB, Stephen PB, Alexander G, Michael L, Losick Richard L. 2017. Molecular Biology of the Gene, 7th edition. Pearson Education.
- 2. Krebs JE, Goldstein ES, Kilpatrick ST. 2017. Lewin's GENES XII. Jones and Bartlett Publishers, Inc.
- 3. Lodish H, Berk A, Kaiser CA, Krieger M, Bretscher A. 2016. Molecular Cell Biology, 8th edition. W H Freeman & Co.
- 4. Alberts B. 2014. Molecular Biology of the Cell, 6th edition. Garland Science.
- 5. Daniel L. Hartl DL, Cochrane B. 2017. Genetics: Analysis of Genes and Genomes 9th edition. Jones & Bartlett Learning.
- 6. Griffiths AJF, Wessler SR, Carroll SB, Doebley J. 2015. Introduction to Genetic Analysis, 11th edition. W.H. Freeman & Worth Publishers.
- 7. Stryer L, Berg JM, Tymoczko JL, Gatto Jr GJ. 2019. Biochemistry, 9th edition. W. H. Freeman.
- 8. Sharma AK, Sharma A. 1980. Chromosome Techniques Theory and Practice, 3rd edition. Elsevier.
- 9. Meksem K, Kahl G. 2010. The Handbook of Plant Mutation Screening: Mining of Natural and Induced Alleles. Wiley.
- 10. Cotton RGH, Edkins E, Forrest S (Eds.). 1998. Mutation Detection: A Practical Approach (Practical Approach Series), 1st edition. IRL Press.