European Journal of Medicinal Chemistry Volume 89, 7 January 2015, Pages 21-31 Short communication # Design, synthesis and structure–activity relationship (SAR) studies of imidazo[4,5-b]pyridine derived purine isosteres and their potential as cytotoxic agents Ayyiliath M. Sajith ^{a, d, 1} ¹⁸, K.K. Abdul Khader ^{b, 1}, Nithin Joshi ^c, Manchala Nageswar Reddy ^h, M. Syed Ali Padusha ^b, H.P. Nagaswarupa ^c, M. Nibin Joy ^f, Yadav D. Bodke ^f, Ranjith P. Karuvalam ^g, Rinti Banerjee ^c, A. Muralidharan ^{a, d} A, P. Rajendra ^hA ### Show more V + Add to Mendeley 🧠 Share 🧦 Cite https://doi.org/10.1016/j.ejmech.2014.10.037 Get rights and content # Highlights - Regioselective synthesis of some purine isosters (arylated/heteroarylated imidazo[4,5-b]pyridines) as potent anticancer agents. - (Ataphos)PdCl₂ catalyzed Suzuki cross-coupling reaction. - SAR studies of the synthesized arylated/heteroarylated imidazo[4,5b]pyridines. - Evaluation of microsomal stability of the newly synthesized compounds. - Analogue 6b displayed strong cytotoxicity and good microsomal stability. ## Abstract Drug resistance to chemotherapeutic agents paved the way to develop novel synthetic molecules which are active on MDR cancer cell lines. Regio-isomeric imidazo[4,5-b]pyridine analogues were synthesized and evaluated for their cytotoxic activity against a range of cancer cell lines. The structure—activity relationship (SAR) studies of the imidazopyridine analogues are also described. Analogue 6b displayed strong cytotoxicity and good microsomal stability.