

Cerium Ions Grafted on Functionalized Mesoporous SBA-15 Molecular Sieves: Preparation and Its Catalytic Activity on *p*-Cresol Oxidation

Yayati Naresh Palai¹ · K. Anjali¹ · Ayyamperumal Sakthivel¹ · Maqsood Ahmed² · Dhanjay Sharma² · Sushant K. Badamali³

Received: 25 July 2017 / Accepted: 26 September 2017 / Published online: 22 November 2017 © Springer Science+Business Media, LLC, part of Springer Nature 2017

Abstract

Cerium ions were grafted onto the internal surface of organo-functionalized mesoporous SBA-15 molecular sieves by a post-synthesis method. The resultant SBA-DA-Ce materials were fully characterized by various analytical and spectroscopic techniques including powder XRD, N_2 physisorption studies, SEM, FT-IR, DR-UV-Vis, TG-DTA, 29 Si and 13 C MAS-NMR techniques. The organo-functionality present on the surface was confirmed by the MAS-NMR and FT-IR studies, while the presence of cerium as Ce^{4+} ions was evident from the DR-UV-Vis studies. The catalytic activities of materials with different cerium ion content were assessed in terms of the oxidation of p-cresol under varying reaction conditions. The diamine-functionalized SBA-15 with 8 mmol of cerium ions per gram of SBA-15 (i.e., SBA-DA-Ce-8) showed the best catalytic activity, with a p-cresol conversion of \sim 87%.

Graphical Abstract

Cerium ions were grafted on the surface of functionalized SBA-15 by the post-synthesis method. The resultant SBA-DA-Ce showed promising activity on *p*-cresol oxidation with a conversion of 87%.

Keywords Oxidation $\cdot p$ -Cresol \cdot Mesoporous SBA-15 $\cdot p$ -Hydroxybenzaldehyde \cdot Rare earths

- Ayyamperumal Sakthivel sakthiveldu@gmail.com
- Inorganic Materials & Catalysis Laboratory, Department of Chemistry, School of Physical Sciences, Central University of Kerala, Kasaragod 671316, India
- Department of Chemistry, University of Delhi, Delhi, India
- Department of Chemistry, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004, India

1 Introduction

Over the decades heterogeneous catalytic materials have played a pivotal role in variety of industrial processes [1]. The most common heterogeneous catalysts used in industries are metals supported on inert oxides, metal oxides, and porous molecular sieve materials [2]. Recently, the development of environmentally friendly heterogeneous solid catalysts has

