345

- Thangaraj Baskaran, [a] Jayaraj Christopher, [b] Mariyamuthu
- 6 Mariyaselvakumar, [c] Ayyamperumal Sakthivel,* [a,d]

7 8

- * a Department of Chemistry, School of Physical Sciences, Riverside Transit Campus, Central University of Kerala,
- 9 Padnekkad, Kerala-671 314, India,
- 10 b Indian Oil Corporation Ltd, R&D Centre, Faridabad-121007, India,
- 11 ° Inorganic Material and Catalysis Division, CSIR-CSMCRI, Bhavnagar-364002, Gujarat, India,
- d Department of Chemistry, Inorganic Materials & Catalysis Laboratory, University of Delhi, Delhi-110007, India.
- E-mail: sakthivelcuk@cukerala.ac.in / sakthivelcuk@gmail.com
- 14 URL: http://cukerala.ac.in/index.php?option=com_content&view=article&id=274&Itemid=441&lang=en

15

- ABSTRACT:A composite material (MAMCM) possesin 50 both layered MgAl-hydrotalcite (HT) and MCM-22 wa 51 prepared by a simple co-precipitation method. Th 52 resulting composite material has features of both MCM-22 and the HT layered framework, as shown by powder XRD, FT-IR, ²⁹Si, ²⁷Al-MAS NMR, and SEM study. Electron
- FT-IR, ²⁹Si, ²⁷Al-MAS NMR, and SEM study. Electron microscopy revealed that layer sheets are arranged in a spherical morphology. The composite material was utilized
- 24 for vapor phase alkylation of toluene. The MAMCM 25 material showed better toluene conversion than MCM-22
- 26 and MA-HT materials.
- 27 **Keywords:** Layered Materials, zeolite, hydrotalcite, 28 catalysts, toluene alkylation
- 29 Introduction

30

31

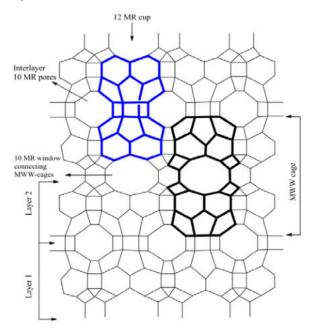
33 34

37

38

39

41


42

43

45

47

and adjust the pore entrance of MCM-22 materials and reduce side reactions such as multi-alkylation and dealkylation. [21-24]

Scheme 1. Schematic representation of MCM-22 structure.

On other hand, layered hydrotalcite (HT) materials have cationic framework with general formula[M(II)_(1--x)M(III)_x(OH)₂]^{x+}[Aⁿ⁻_{x/n}]mH₂O, [25-27] yield a variety of tailor made materials and shown as potential catalyst, [28] catalytic supports [29, 30] and adsorbents [31] etc. In the HT materials the interlayer anions are exchangeable, giving rise to elegant intercalation chemistry. In this regards it is worth to mention here that recently, the