Iron Oxide Impregnated SBA-15: Synthesis-Characterization and Its Catalytic Application in the Benzoylation of Benzene Ayyamperumal Sakthivel^{1,2,*}, Rekha Yadav², A. Shamna¹, and Akhila Muralidhar¹ ¹ Department of Chemistry, School of Physical Sciences, Riverside Transit Campus, Padnekkad, Nileshwar, Kasaragod District 671314, India ² Department of Chemistry, Inorganic Materials and Catalysis Laboratory, University of Delhi (North Campus), Delhi 110007, India Trivalent iron impregnated SBA-15 (Fe-SBA-15) molecular sieve materials are prepared by a simple wet impregnation method. The formation of uniformly distributed iron oxide on the SBA-15 framework is evident from powder XRD studies. Furthermore, the resultant materials are systematically characterised using FT-IR, N_2 sorption and thermogravimetric analysis. The absence of X-ray diffraction peaks corresponding to iron oxide suggests that it is uniformly distributed in the SBA-15 channels. The synthesised materials are studied for the benzoylation of benzene and show good catalytic activity. **Keywords:** Mesoporous Molecular Sieves, SBA-15, Wet-Impregnation, Benzoylation, Iron-Oxide. P: 130.220.181.80 On: Wed, 22 Mar 2017 06:41:05 Copyright: American Scientific Publishers ## 1. INTRODUCTION Friedel-Crafts acylation¹ is an important class of reactions in organic synthesis. The products of this reaction are intermediates in different fields, including pharmaceuticals, fine chemicals,² sorption,^{3,4} dye degradation,⁵ fragrances⁶ and agrochemicals.⁶ Traditionally, Friedel–Crafts acylation is catalysed in a homogeneous medium,⁷ using hazardous soluble Lewis acids (e.g., AlCl₃, TiCl₄ or FeCl₃) or strong mineral acids (e.g., HF or H₂SO₄).⁷ However, homogeneous catalysis requires tedious work to separate the products.⁷ In addition, the formation of various side products and huge waste effluent pose severe environmental challenges.⁷ Alternatively, heterogeneous catalysis is of great industrial importance owing to its ease of handling, separation and reusability.⁵ Several solid acid catalysts viz., ZSM-5,⁸ clays,⁹ HY zeolite,¹⁰ Mg-hydrotalcite,¹¹ (mesoporous silica SBA-15, HMS and MCM-41) containing different metal ions^{12–30} such as Al,^{12, 13} Ti,¹⁴ Pt,¹⁵ W,¹⁵ Fe,^{16, 17} Pd,¹⁸ Zr,¹⁹ Mo,²⁰ Ni,²⁰ Ga,⁸ Tl,⁸ Cu²¹ and In²¹) have been extensively studied and are efficient catalysts for Friedel-Craft reactions. In addition, mesoporous silica materials, in particular SBA-15, have received greater attention owing to their thick-walled 2D hexagonal pore walls with high surface areas and pore volumes, making them potential candidates for the benzoylation of aromatics.^{22–24} Trivalent iron on inorganic frameworks has a range of applications in various fields, such as catalysis,^{16,17} batteries,²⁵ gas sensors²⁶ and drug delivery.²⁷ It is of interest to introduce trivalent iron oxide on the external surface of the SBA-15 framework and explore its catalytic application for Friedel-Craft acylation. In the present work, we report the preparation of iron oxide supported on ordered mesoporous SBA-15 using a wet impregnation method. The resultant materials were thoroughly characterised and utilised for the liquid phase benzoylation of benzene. ## 2. EXPERIMENTAL PROCEDURE The typical synthesis of iron oxide loaded SBA-15 involved two primary steps, the synthesis of SBA-15 and the wet-impregnation of the trivalent iron source on SBA-15 and subsequent calcination at 550 °C. ## 2.1. Synthesis of SBA-15 SBA-15 was synthesised according to the procedure described elsewhere, using Pluronic P123 triblock copolymers (polyethylene oxide)-poly(propylene oxide)-poly(propylene oxide) (Aldrich)) EO_nPO₇₀EO_n ^{*}Author to whom correspondence should be addressed.