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ARTICLE INFO ABSTRACT

Keywords: Automatic classification and prediction of epileptic electroencephalogram (EEG) signal are of great concern to
Epilepsy the research community due to its non-stationary and non-linear properties. Features with minimal computation
EEG cost are highly needed for the rapid real-time precise diagnosis and implementation in the EEG scanning devices.

Exponential energy
Entropy
Classification

Even though energy is a well-known feature for the analysis of signals, it is very rarely used in EEG analysis. An
exponential energy feature in the time domain is proposed in this study. The proposed exponential energy

feature provides a classification accuracy of 89% in the Bern-Barcelona EEG dataset and 99.5% in the Ralph
Andrzejak EEG dataset. The promising results open a wide applicability of exponential energy in biomedical

signal analysis.

Epilepsy is a chronic disease which can affect any person at any age
and have a variety of causes including brain malformations, intracranial
hemorrhages, brain tumors, etc. [1,2]. Subjects may experience fears,
strange smells, and unusual physical conditions depending on which
neurons are affected [3]. During epilepsy, the subject suffers from re-
current and unprovoked seizures due to excessive and uncontrolled
neuronal activity in the brain [4]. Noticeable symptoms/signs include
jerking, uncontrollable movements and loss of consciousness [5]. Early
and precise diagnosis is very important for the better treatment of
epilepsy. The classical approach of epilepsy diagnosis is done by in-
terpreting EEG signals with the help of an expert radiologist and/or a
doctor.

Automatic classification of epileptic EEG signals with high accuracy
is a primary requirement for the effectual understanding of the subject
in medical diagnosis. The quality of features extracted from EEG signal
will lead to a higher classification rate. Most of the literature work in
EEG classification shows the relevance and importance of entropy
features (flavors includes Shannon [6], Renyi [7], approximate [8],
sample [9,10], phase [11], fuzzy [12], etc.) extracted directly from the
signal and/or from the transformed domains (like frequency, time-fre-
quency, empirical mode decomposition (EMD), etc.). Other features
include features from regression, correlation, amplitude, mean, median,
mode, variance, skewness, kurtosis, zero-crossing, Hjorth parameters,
total variation, relative power and largest Lyapunov exponent, etc.
[13,14].

Recent works in literature use a combination of various features
extracted from either signal domain or transformed domains like EMD,
fast Fourier transform (FFT), Wavelet, etc. For example, Sharma et al.
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used different types of entropies like Shannon, Renyi, Tsallis, permu-
tation, fuzzy and phase entropies from wavelet domain for the classi-
fication of EEG signals [15]. Entropy features from the combination of
EMD and wavelet domain is used by Das et al. for the discrimination of
EEG signals [16]. Another such work which makes use of the combi-
nation of features is by Gajic et al., in which they make use of features
from different domains like time, frequency, time-frequency, and non-
linear features for EEG classification [13].

Certain literature works try to reduce the number of features by
means of dimensionality reduction techniques (like PCA, LDA, PSO,
etc.). One of the important work by Gajic et al. makes use of di-
mensionality reduction for reducing the features obtained from wavelet
domain for effectual epileptic seizure detection [17].

The primary goal of any machine learning system is to have a less
complex system (in terms of memory for hardware implementation and
efficiency for life critical systems) learned with less number of features
without any compromise on prediction accuracy, precision and recall.
Real-time embedded applications will become less complex in term of
memory, if there are less number of input features. Also the efficiency
becomes one of the most prominent concern, when we try to design a
life critical applications like epileptic prediction system in which sei-
zure is predicted just 5 minutes before the occurrence of seizure. If a
solitary feature, which is extracted from signal domain can discriminate
the epilepsy EEG signals with high accuracy, precision and recall, then
it will be one of the best features for the development of less complex
system.

In this context, the study started for identifying a feature which can
be best used for epileptic classification. We started the analysis using
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the energy feature, which is a well-known feature to characterize a
signal and also is a measure of signal strength [18].

The capabilities of energy feature from sub-bands of EEG signal
along with other features have been widely studied in the literature,
most importantly in the works by Gandhi et al. [19], Panda et al. [20],
Omerhodzic et al. [21], and Fergus et al. [22] in which energy features
are extracted from the sub-bands of wavelet decomposition.

Even though there are works that use energy feature from sub-bands
of EEG signals, the relevance and importance of energy directly from
the EEG signal (i.e. in time-domain without any transformation) has not
been utilized well for EEG classification. Comparing to energy feature
from the transform domain, energy feature from signal domain will
require less computational time, especially in embedded systems.
Hence, this paper makes a study on the performance of EEG classifi-
cation based on energy and other features directly from the time-do-
main.

Energy in the signal domain will be usually calculated by adding the
squares of the signal values at every time instances. Hence it will not
discriminate the signals having irregularities in amplitude of the signal
(high changes in the amplitude can be seen in the case of epileptic
signals than in the case of non-epileptic signals). Moreover, for longer
signals or longer segments of the signal, due to the addition of the
squares of the signal, the resultant energy will be a large numerical
value and needs further normalization for effectual use with any ma-
chine learning algorithm.

Hence, this paper also proposes an exponential energy feature for
EEG classification, which will be able to clearly differentiate the signals
having irregularities in amplitude, as exponential energy considers (or
give more importance to) low amplitude part of the signals. Moreover
the resultant exponential energy so obtained is more suitable to ma-
chine learners when compared with energy of a signal. The results show
that the exponential energy features (directly from the signal) provide
comparatively good classification results with a minimum number of
features.

This paper is organized as follows. A quick review of the variants of
the most popular entropy features is given in Section 1. Section 2 de-
scribes the proposed exponential feature and its properties. The details
of the dataset used for the study is given in Sections 3 and 4 deals with
the experimental setup, results and discussion. Section 5 concludes the

paper.
1. Review of the most popular entropy features

Various features are proposed by the research community for the
analysis of EEG signals during the past few decades. Entropy is one of
the most popular and widely used irregularities/disorders character-
izing feature for the analysis of biomedical signals including EEG [6].

Let x be the time series of length N given by x = UY,,{x(i)}. Some
popular entropies measures are described below.

1.1. Indirect Shannon Entropy (IShE)

Shannon entropy (ShE) of signal (say x) is given by

N 1
ShE = Zpi log(—]
p.

i=1 i

(€8]

where p; is the probability of a value i€x and N; is the number of
unique values in x (if the values in x are continuous, then N; is the
number of discrete bins) [6].

The most frequent usage of Shannon entropy in the literature is that
obtained from the spectral transformation (most widely used one is
“Fourier”) of the signal [23]. The distribution of the power as a function
of frequency (namely, the “power spectral density”) will provide the
power level (P for each frequency f. Then the equation for spectral
Shannon entropy is given by ShE;
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Ny 1
ShE, = Z Py log[—]
f=1 1% 2)

where N, is the number of unique frequency values (in case of con-
tinuous frequencies, N, is the number of discrete frequency bins). Many
studies in the literature use ShE; as a feature for the analysis of EEG
signals [24].

Instead of finding out the probability or power from the signal, we
calculate indirect Shannon entropy (IShE), given by

o 1
i

i=1

€)
where N is the length of the signal, x.

1.2. Renyi Entropy

Similar to ShE;, Renyi entropy (RE) also uses power level for each
frequency [16] and is given by

log oo
1-a = ! 4)

where a (@ > 0, a = 1) is the order of RE and N, is the number of
discrete frequency components.

RE(a) =

1.3. Log-energy entropy

Log-energy entropy (LEE) is another well-known variant of entropy
which is widely used in the analysis of EEG signals [16]. If
x = UN,{x()} is the time series with length N and py is the power of ith
frequency component, then the log-energy entropy can be computed as
follows:

M
LEE = ) log(p,)?
f=1 6)
where N; is the number of discrete frequency components.
In this paper, we have used Xx; instead py for the calculation of in-
direct log-energy entropy as follows.

N
ILEE = log(x;)?
x; (6)

1.4. Approximate entropy

Approximate entropy (AE) is one of the most popular and widely
used features to measure regularity in signals [25] and is given by

T log(@n(r ) X" log(@"t(r. D)

AE = ==L
N-m+1 N-m )]

where ¢"(r, i) is given below with © as Heaviside function.

N—-m+1
m i) — 1 — i —
¢m(r, i) = N—mt1 ]_Zl O(r — (maxg_y,... mlx(i + k — 1)
—x(G+k—-1l) (8)

1.5. Sample entropy

Sample entropy (SE), proposed by Richman and Moorman [9] is an
improved version of AE by avoiding self-match counting problem [26].
SE can be computed as

N—:n+ 1 Zi]i_IMH ¢, 1)
SE = —log 0 N -
o S 0) ©
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1.6. Fuzzy entropy

The similarity of vectors in AE and SE are having a sharp decision
based on Heaviside function [12]. The fuzzy entropy (FE) will eliminate
this sharp decision using a fuzzy function instead of Heaviside function.

Fuzzy entropy (FE) for any given m, n, r, N can be calculated as

follows.

N-m1 [ S om0 )

N-—m Ei:l N-m+1
FE = log
N-m+1 _n_p(Z5 e i)
Zl'=1 N-m
(10)

where ¢"(r, i, j) is given as
@ (r, i, ) = e Tk an

where k(i, j) is defined as
k(@,j) = maxe=y, .. x@+ k-1 —xG+k—-1) —u, + ,ujl)" 12)

3
—

1 .
w=—=,x(i+q
m = 13)
1 m—1
p=— 2 x(+9
m 4= 14)

2. Exponential energy — a novel feature

As described in the introduction, energy is a well-known feature in
signal processing to measure the strength and to characterize the signal
[18]. The energy of a continuous-time signal x(t) is the area under the
square of the function and is defined as follows.

E=[ : I (£) Pdt as)

For a discrete signal of length N, the energy can be defined as fol-
lows.

N
E= Ix(n)l?
nZ:; (16)

The abnormal signals such as signals affected with noise and sudden
disturbances (namely irregularities) will have steeper peaks (with
higher amplitudes) than normal signals (both in positive and negative
direction). These irregularities will get added up in the energy of the
signal (according to Eq. (15), & (16)). Usage of certain peak functions
will enable us to detect such types of abnormalities. There are various
modified exponential/Gaussian/normal (peak) type functions widely
used in various disciplines including bio-medical domain [27]. To speed
up the learning process in feed-forward artificial neural network,
Ahamed et al. [28] finds the energy (as the sum of squared error) and
substitutes it in an exponential function. But a summation of in-
stantaneous exponential energy is rarely found in the literature, espe-
cially in the EEG applications.

Hence we have proposed an exponential energy feature which will
give lesser importance/values to the signals having a higher amplitude
and thereby leading to a good measure of signal strength. The ex-
ponential energy of a discrete signal (x) of length N can be defined as
follows:

N _[ Ix (n)z\ ]
ExpEn(x) = e ‘
nz=:1 an

where ois a free parameter which determines the width of the function/
curve. Exponential energy for various o is shown in Fig. 1.

The proposed exponential energy function can also be considered as
a fuzzy function (centered at zero and having a spread specified by a
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Fig. 1. Exponential energy function for different o.

free parameter, o) which takes the amplitude of the signal (at any in-
stance) as input and provides the membership grade in the interval [0
1]. The exponential energy will be higher for those signals where the
amplitudes of the signals are comparatively less (near to zero). If the
free parameter (0) becomes 1, then the amplitudes in the range [-2.15
2.15] will get a considerable exponential energy greater than or equal
to 0.01. Since these amplitudes in the range [-2.15 2.15] are of at-most
importance in categorizing epileptic signals, the o is fixed as 1 for our
experiments. Table 1 shows the results of classification, when o is fixed
as 0.2, 0.5, 0.8, 1, 2, 3, 4, 5, SD(standard deviation) and 2 * SD?. The
results reveal that the features using exponential energy function with
o = 1 provides better results for epileptic classification.

2.1. Relationship between exponential energy and energy

Let E, = x/ and ExpEn, = e7 are respectively the instantaneous
signal energy and instantaneous exponential energy at time instance t.
Then the exponential energy (ExpEn) can be defined in terms of in-
stantaneous signal energy as

N
ExpEn = ) e7B.
; (18)

Similarly, the energy of the signal can be defined in terms of in-
stantaneous exponential energy as

N
E= Z — log(ExpEn,).
t=1 (19)
It can be observed that the instantaneous energy of a signal at time
instances t is equal to the negative logarithm of the instantaneous

Table 1

Classification accuracy (%) of various datasets (Bern-Barcelona EEG dataset and
Ralph Andrzejak EEG dataset. Descriptions of the datasets are given in Sections
3.1 and 3.2 respectively) for different values of o.

o Bern-Barcelona Ralph Ralph Ralph
Zvs. S Zvs.Nvs. S Zvs.Fvs. S
0.2 87 97.5 88 86
0.5 87 97.5 89 87
0.8 87 99 90 87.67
1 89 99.5 91.67 89.33
2 86 99 90 89
3 86 91.5 91.33 89
4 85 99.5 91.67 89
5 85 99 91.33 88.33
SD 88 97 90 87
2*8D? 78 97 71 78

Z:Healthy, N and F: Interictal, E: Ictal.
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Fig. 2. (a) High amplitude signal (Exponential Energy = 4.1287, Approximate entropy = 0.2596, Signal Energy = 7.8123e+06) (b) Low amplitude signal
(Exponential Energy = 36.1901, Approximate entropy = 1.0771, Signal energy = 868.5101).

exponential energy at time instances t.
2.2. Behaviour of exponential energy

In order to see the changes/ behaviour of ExpEn feature the fol-
lowing three types of cases are considered.

1 Two random signals, one with smaller amplitude and another signal
with higher amplitude are taken as shown in Fig. 2 ((a) signal with
smaller amplitude and (b) signal with higher amplitude).

2 3 signals of same amplitude but different frequencies as shown in

Fig. 3 ((a) 30 Hz, (b) 15 Hz and (c) 3 Hz).
3 Two segments of EEG signals (one with an eye blink and other
without eye blink) as shown in Fig. 4.

The approximate entropy, exponential energy and signal energy are
calculated for all the three cases and are shown in Table 3. It can be
clearly seen that the exponential energy's ability to discriminate low
amplitude and high amplitude signals. The upper limit and lower limit
of the values of exponential energy is much suitable for any classifier
when compared to the signal energy.

Fig. 3. Effect of exponential energy for different frequency signals
(a) Signal with frequency 30Hz [Exponential Energy = 112.3742,

©
5 Approximate Entropy = 0.0885, Signal Energy = 86.8109] (b)
a2 0 ] Signal with frequency 15Hz [Exponential Energy = 112.3755,
E Approximate Entropy = 0.1602, Signal Energy = 86.8024] (c)
1 L | h 1 \ | | Signal with frequency 3 Hz [Exponential Energy = 112.3780,
0 20 40 680 80 100 120 140 160 180 Approximate Entropy = 0.3124, Signal Energy = 86.8001].
Samples
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Fig. 4. EEG signal segment (a) with an eye blink, (b) without an eye blink.

2.3. Comparison of exponential energy with approximate entropy and
energy

In order to validate the performance of the exponential energy, we
have considered Upenn and Mayo clinic's seizure detection challenge
dataset [29]. The details of the dataset can be had from the paper by
Baldassano et al. [30]. Table 2 shows the comparative results of clas-
sification based on the features like exponential energy, approximate
entropy and energy. It can be seen from the results that exponential
energy feature discriminates the epileptic signals comparatively better
than the other two features.

3. Datasets

Two benchmarking datasets, namely, Bern-Barcelona EEG dataset
[31] (dataset 1) and Ralph Andrzejak EEG dataset [32] (dataset 2) are
used for the experiments and the description of the datasets are given in
following subsections.

3.1. Bern-Barcelona EEG dataset (Dataset 1)

The dataset contains two classes of EEG signals namely, focal (ob-
tained from the epileptic area of the brain) and non-focal (obtained
from non-epileptic area of the brain) [31]. Each class contains 3750
pairs of signals (In case of focal class, one from the channel where
epileptic signals are originated and another from the neighboring
channel. In the case of non-focal class, signals are obtained from two
neighboring channels which are not from the epileptic region). The
signals are of 20 seconds duration with a sampling frequency of 512 Hz.
In order to compare with the existing works, we have considered the

Table 2
Results of validation of exponential energy feature in Upenn and Mayo Seizure
detection challenge dataset.

Data Approximate entropy Signal energy Exponential energy
Dog 1 93.8% 97.32% 99.16%
Dog 2 92.8% 97.65% 99.09%
Dog 3 92.2% 96.25% 98.12%
Dog 4 91.43% 92.66% 97.11%

Table 3
Approximate entropy (AE), signal energy and exponential energy (ExpEn) of
various signals.

Signals AE Energy ExpEn
Random signals High amplitude 0.2596 7.8123e+06 4.1287
Low amplitude 1.0771 868.5101 36.1901
Sine waves 3 Hz 0.3124 86.8001 112.3780
15 Hz 0.1602 86.8024 112.3755
30 Hz 0.0885 86.8109 112.3742
EEG signals Normal 0.5619 2649100 77.7709
Eye blink 0.1159 69598419 36.1155

same number of signals for the experimentation as specified by Zhu
et al. [33], Sharma et al. [24,15,34], Das et al. [16].

3.2. Ralph Andrzejak EEG dataset (Dataset 2)

The dataset consists of five groups of signals, namely, group Z
(healthy group - recorded from healthy subjects during eyes open),
group O (healthy group - recorded from healthy subjects during eyes
closed), group S (ictal group - collected from epileptic subjects during
the seizure), group N (interictal activity - from hippocampal location)
and group F (interictal activity - from epileptogenic zone). Each group
contains 100 EEG signals of 23.6 seconds duration with a sampling rate
of 173.61 Hz (thus contains 4097 samples per record) [32]. The fol-
lowing classifications are conducted using the dataset.

1 Classification between group Z (healthy group) and group S (ictal
group) as specified by Kannathal et al. [35], Wang et al. [36] and
Kumar et al. [37].

2 Classification of group Z, group N and group S as specified by
Abualsaud et al. [38].

3 Classification of group Z, group F and group S as specified by Sadati
et al [39].

4. Experiments, results and discussions

The performance of the proposed exponential energy feature is
evaluated on two different epilepsy datasets (see Section 3). Before
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Table 4
k-fold classification accuracy for different k values.

Dataset Accuracy (%) for k-fold

K=2 k=5 k =10 k=15 k =20
Bern-Barcelona 87 89 88 87.78 87
Ralph EEG (Z vs. S) 98.5 99.5 929 98.97 99
Ralph EEG (Z vs. N vs. S) 90.67 91.67 91 91.33 90.67
Ralph EEG (Z vs. F vs. S) 87 89 88 87.78 87

extracting features (from the signals or from its derivatives) of a
channel, the frequencies beyond 60 Hz are removed using a 6th order
Butter-worth filter and are segmented into 10 non-overlapping seg-
ments. For all the datasets, binary support vector machine (SVM)
classifier with linear kernel is used (when the number of classes in the
datasets is more than 2, we have trained separate SVMs for each pair of
the classes and then majority voting scheme is adopted). k-fold cross-
validation is adopted in all the experiments. In k-fold validation, we
divide the entire dataset into k-equal parts. Then k-1 folds will be used
for training and the left-out folder will be used for testing. This will be
repeated for k times. Hence the minimum and maximum value of k are
2 and M (where M is the total number of records or samples). When k
becomes equal to M, the k-fold validation becomes equivalent of leave-
one-out classification. There is no universal rule to fix the value of k.
Hence, we have done validation with various k such as 2, 5, 10, 15 and
20. The results in Table 4 show that the k-fold validation with k=5
provides comparatively better classification result. Hence, in the rest of
the comparisons we have only shown the results with k=5.

The following subsection explains the experimental methods and
results for each of the datasets in detail.

4.1. Results on Bern-Barcelona EEG dataset (Dataset 1)

Bern-Barcelona EEG dataset is used as a benchmark in some recent
studies including but not limited to the following. Zhu et al. [33] used
delay permutation entropy (DPE) from the time domain signal with
feature vector length of 50 and they achieved an accuracy of 84% with
SVM classifier. Sharma et al. [15] extracted Shannon, Tsallis, Permu-
tation, Renyi, fuzzy and phase entropies from sub-bands of the discrete
wavelet transform (DWT) coefficients and have achieved an accuracy of
84% using least square SVM (LS-SVM). In, another attempt Sharma
et al. [34] decomposed signal into various intrinsic mode functions
(IMFs) using empirical mode decomposition (EMD) and features ex-
tracted from each IMFs. Average sample entropy (ASE) for IMF3, IMF5,
IMF6 and average variance of instantaneous frequencies (AVIF) for
IMF1, IMF3 are used as features and achieved a classification accuracy
of 85% using least square support vector machine (LS-SVM).

Fasil et al.'s [40] extracted features from both time domain (x, y,
x —y,x*y, |(c — y)|) & differential domain (i.e. x’, y’, x'" and y') and
achieved an accuracy of 86% using SVM. An EMD based method is
proposed by Sharma et al. [24] in which various entropy features such
as Shannon entropy, Renyi entropy, approximate entropy, sample en-
tropy and phase entropies (Phase 1 and Phase 2) are extracted from 10
IMFs and finally reduced the feature length to 13 using student's t-test
and achieved an accuracy of 87% using LS-SVM classifier. Fasil et al.
[41] achieved an accuracy of 88.14% with the features (log energy
entropy and signal energy) from different variations (x, y, x — y, x*y,
x,y, X',y using SVM classifier.

For our experiments in this paper, in addition to the two channel
signals (say x and y) in the dataset, we have considered the signal
variants like channel's first derivative (namely x” and y’), second deri-
vative (namely x'" and y’/), channel difference (namely x-y), absolute
channel difference (|x — y|) and product of channels (namely x. *y).
The signals and its variants are divided into equal segments of 2 seconds
duration. From each of these signals including the variants, we have
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Fig. 5. Box plot of focal and non-focal signal classification accuracies (k-fold
cross validation is performed with k=>5) for various entropy features, signal
energy and exponential energy.

extracted the features from all the segments. The features extracted
from each of the segments includes approximate entropy, sample en-
tropy, Shannon entropy, log energy entropy, fuzzy entropy and signal
energy. The features are averaged across the segments.

Fig. 5 shows the accuracy of focal and non-focal classification for
each of the features. It is clear that exponential energy provides an
average classification accuracy of 89% which is better when compared
with other features. A comparison of the performance of the proposed
feature for the classification of focal and non-focal signal with other
methods in the literature (which uses the same dataset) is given in
Table 5.

4.2. Results on Ralph Andrzejak EEG dataset (Dataset 2)

Ralph Andrzejak EEG database is used as a benchmark in some re-
cent studies including but not limited to the following. Kannathal et al.
[35] attempted to classify healthy and ictal EEG signals using entropy
features (Shannon & Renyi from frequency domain and approximate
entropy & Kolmogorov-Sinai entropy from time domain) using adaptive
neuro fuzzy inference system (ANFIS) classifier and achieved an accu-
racy of 92.2%. Subasi [42] proposed a mixture of experts model using
mean, average power, standard deviation, the ratio of absolute mean

Table 5
Comparison of classification performance for the Bern-Barcelona EEG dataset
(Dataset 1).

Study Domain  Features/Classifier nf®  Acc?

Zhu et al.[33] Time Delay permutation entropy 50 84 %
&SVM

Sharma et al.[15] DWT Shannon, Renyi, Tsallis, 7 84 %

permutation, fuzzy and
phase entropies &LS-SVM

Sharma et al.[34] EMD ASE, AVIF &LS-SVM 5 85 %
Fasil et al.[40] Time Log energy entropy, signal 18 86 %
energy &SVM

Sharma et al.[24] EMD Shannon, Renyi, approximate, 13 87 %

sample and phase entropies

&LS-SVM
Fasil et al.[41] Time Log energy entropy, signal 16 88.14 %
energy &SVM
Proposed Time Exponential energy &SVM 9 89 %
method

2 No.of features, ° Accuracy.
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Fig. 6. Box plot of healthy and ictal group EEG signal classification accuracies
(k-fold cross validation is performed with k=5) for various entropy features,
signal energy and exponential energy.

Table 6
Comparison of classification performance for the Ralph Andrzejak EEG dataset
(Dataset 2).

Study Domain Features/Classifier n.f* Acc.?
Healthy(Z) vs. Ictal(S)
Kannathal et al. Frequency  Shannon, Renyi, 4 92.2 %
[35] and Time Kolmogorov-Sinai
entropies &ANFIS
Subasi [42] DWT Statistical features 16 94.5 %
&ANN
Nigam et al.[43] Time Relative Spike amplitude, 2 97.2
Spike occurence frequency
&ANN
Patidar et al.[44] TQWT Kraskov entropy 4 97.75 %
&LS-SVM
Kumar et al. [37] Gabor Histogram of 1D-LBP 17 98.33 %
&NN classifier
Polat et al.[45] FFT Welch PSD estimate 129 98.72 %
&Decision tree
Wang et al.[36] Multi- Statistical features from 14 99.25 %
domain FFT &DWT, EMD-PSR,
entropy &SVM
Proposed Time Exponential energy 3 99.5 %
method &SVM
Healthy(Z) vs. Interictal(N) vs. Ictal(S)
Abualsaud et al. DWT Statistical features 32 90 %
[38] &Ensemble Classifier
Proposed Time Exponential energy 3 91.67 %
method &H-SVM
Healthy(Z) vs. Interictal(F) vs. Ictal(S)
Sadati et al. [39] DWT Energy 6 85.9 %
Proposed Time Exponential energy 3 89 %
method &H-SVM

@ No. of features, ® Accuracy.

values of adjacent sub-bands from 4 DWT sub-bands (A5, D3-D5) and
achieved an accuracy of 94.5%. A LAMSTAR artificial neural network
(ANN) is utilized by Nigam et al. [43] for the automated detection of
epilepsy using relative spike amplitude and spike occurrence fre-
quencies as features and achieved an accuracy of 97.2%.

Patidar et al. [44] extracted Kraskov entropy from the sub-bands of
tunable-Q wavelet transform (TQWT) and obtained an accuracy of
97.75 % using LS-SVM classifier. Kumar et al. [37] used histograms of
the one-dimensional local binary pattern (1D-LBP) from segments of
four Gabor filter responses and achieved an accuracy of 98.33%. In a
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method proposed by Polat et al. [45], the Fast Fourier Transform (FFT)
based Welch spectral analysis and decision tree classifier is combined
and developed a hybrid system and attained an accuracy of 98.27%.
Wang et al.[36] extracted 83 features (from various domains such as
time, frequency, time-frequency and EMD-PSR(Phase Space Re-
construction)) and reduced to 14 features using PCA to obtain an ac-
curacy of 99.25% using SVM classifier.

For our experiments in this paper, in addition to the one channel
signals (say x) in the dataset, we have considered the signal variants
like channel's first derivative (namely x’) and second derivative (namely
x""). The signals and its variants are divided into equal segments of 2.36
seconds duration. From each of these signals including the variants, we
have extracted the features from all the segments. The features ex-
tracted from each of the segments includes approximate, sample, fuzzy,
Shannon, Log-energy entropies and signal energy. The features are
averaged across the segments.

Fig. 6 shows the accuracy of healthy and ictal EEG signal classifi-
cation for each of the features. It is clear that exponential energy pro-
vides an average classification accuracy of 99.5% which is promising
when compared with other features.

Apart from healthy and ictal binary classification, we have also
considered the classification of (i) group Z, group N and group S (as
specified in [38])and (ii) group Z, group F and group S (as specified in
[39]). A comparison of the performance of the proposed feature for the
classification with other methods in the literature (which uses the same
dataset) is given in Table 6.

5. Conclusion

In this article, we have proposed a time domain energy-based fea-
ture called exponential energy which can effectively classify the epi-
leptic EEG signals from normal EEG signals. Since exponential energy
feature alone is considered, the number of features is much less when
compared to other similar works reported in the literature. Moreover
for real-time implementation, especially in embedded system, it is al-
most better to have less number of features which can be calculated
much efficiently.

The performance of the proposed feature has been evaluated in two
benchmark epilepsy dataset and achieved a promising result which is
much better than entropy-based features. Since the exponential energy
is extracted in the time-domain, it can easily be adopted into real-time
EEG scanning devices and mobile epileptic prediction systems. As part
of our future calibration of the proposed work, we will consider more
realistic datasets, namely, the Freiburg dataset and the CHB-MIT scalp
EEG dataset, which will enable the proposed method for real-time
clinical applications.
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