Get Access

Electronic and optical properties of Quasi-1D barium zinc chalcogenides Ba_2ZnX_3 (X = S, Se, Te): A DFT approach Thomas Mathew^{a, b}, Suseel Rahul K^{a, c}, C P Sujith^a, Vincent Mathew^a $A \boxtimes$ Show more

🔁 Outline 🛛 😪 Share 🍠	Cite	
-----------------------	------	--

https://doi.org/10.1016/j.solidstatesciences.2020.106456

Get rights and content

Highlights

- Ba₂ZnS₃, Ba₂ZnSe₃ and Ba₂ZnTe₃ were investigated using density functional theory with PBE and HSE06 functionals.
- All materials exhibit quasi-one-dimensional structure with infinite chains of corner sharing ZnX₄ distorted tetrahedra.
- Electronic structure calculations show that all materials are wide band gap semiconductors with direct band gap.
- All materials exhibit high optical anisotropy and large birefringence.

Abstract

We investigated structural, electronic and optical properties of quasi-one-dimensional barium zinc chalcogenides Ba_2ZnS_3 , Ba_2ZnSe_3 and Ba_2ZnTe_3 using density functional theory as implemented in VASP. The structures crystallise in the orthorhombic space group $D_{2h}^{16} - Pnma$ and were studied using PBE and HSE06 functionals incorporating van der Waals corrections using DFT-D3 method. It was found that the calculated structures agree well with experimental