2/1	2/2021
- 27.1	2/2021

Computational study of proton acceleration from the laser irradiated metal substrate: AIP Conference Proceedings: Vol 1953, No	o 1
--	-----

MENU SIGN IN/REGISTER

Chemical Physics Revie	Eirst Article	es Now Online!
	rence Proceedings	
HOME	BROWSE	
HOME		MORE

No Access Published Online: 08 May 2018

Computational study of proton acceleration from the laser irradiated metal substrate

AIP Conference Proceedings 1953, 140011 (2018); https://doi.org/10.1063/1.5033186

Computational study of proton acceleration from the laser irradiated metal substrate: AIP Conference Proceedings: Vol 1953, No 1 Aiith Kumar^{1,2,a)} and Vincent Mathew^{1,b)} **Hide Affiliations** ¹Department of Physics, Central University of Kerala, India, 671314 ²Department of Physics, St. Pius X College, Rajapuram, Kasaragod, Kerala, 671532, India ^{a)}kannothajith@gmail.com b)vincent@cukerala.ac.in * ٠ ٩ < ılı

Topics -

ABSTRACT

2/12/2021

Q

Þ

Target Normal Sheath Acceleration (TNSA) is an important ion acceleration mechanism in LASER irradiated metals. In the present work we have carried out a one dimensional Particle In Cell (PIC) simulation study of proton acceleration by TNSA from pre-ionized

🛃 PDF | 💦 E-READER

 μ m thick proton layer was irradiated with a laser of intensity 5×10²⁰ Wcm⁻² and pulse width 100 fs. We observed the development of very strong electric field in the longitudinal direction, which causes the acceleration of protons from the rear side of the metal target. The temporal and spacial evolutions of longitudinal electric field and maximum attainable energy for the protons have been found out.