

Superlattices and Microstructures Volume 101, January 2017, Pages 1-7

Nonreciprocal propagation of surface plasmon mode guided through graphene layer on magnetized semiconductor

C. Bhagyaraj ^{a, b} ⊠, Vincent Mathew ^c △ ⊠

- ^a Postgraduate and Research Department of Physics, St. Thomas College, Palai, Kerala, 686574, India
- b Department of Physics, St. Mary's College, Sulthan Bathery, Wayanad, Kerala, 673592, India
- ^c Department of Physics, Central University of Kerala, Riverside Transit Campus, Padannakad, Nileshwar, Kasaragod, Kerala, 671314, India

Received 22 October 2016, Accepted 20 November 2016, Available online 23 November 2016.

Show less ^

https://doi.org/10.1016/j.spmi.2016.11.035

Get rights and content

FEEDBACK

Highlights

- Fundamental antisymmetric mode supported by the waveguide structure shows appreciable nonreciprocal dispersion.
- Mode behavior is highly tunable with excitation wavelength, external biasing magnetic field and graphene layer chemical potential.
- Cutoff wavelength is observed for backward propagating mode, proposing the feasibility of realizing one way propagating waveguides.
- Cutoff wavelength of backward propagating mode is identified to be a function of different waveguide parameters.