J. Phys. G: Nucl. Part. Phys. 45 (2018) 095103 (11pp)

https://doi.org/10.1088/1361-6471/aad5c7

Investigation of fusion hindrance in a soft asymmetric system deep below the barrier

Md Moin Shaikh^{1,8}, S Nath¹, J Gehlot¹, Tathagata Banerjee^{1,9}, Ish Mukul^{1,10}, R Dubey^{1,11}, A Shamlath², P V Laveen², M Shareef², A Jhingan¹, N Madhavan¹, Tapan Rajbongshi^{3,12}, P Jisha⁴, G Naga Jyothi⁵, A Tejaswi⁵, Rudra N Sahoo⁶ and Anjali Rani⁷

¹Nuclear Physics Group, Inter University Accelerator Centre, Aruna Asaf Ali Marg, Post Box 10502, New Delhi 110067, India

² Department of Physics, School of Mathematical and Physical Sciences, Central University of Kerala, Kasaragod 671314, India

³ Department of Physics, Gauhati University, Guwahati 781014, India

⁴Department of Physics, University of Calicut, Calicut 673635, India

⁵ Department of Nuclear Physics, Andhra University, Visakhapatnam 530003, India

⁶ Department of Physics, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India

⁷ Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India

E-mail: subir@iuac.res.in

Received 12 June 2018, revised 13 July 2018 Accepted for publication 25 July 2018 Published 8 August 2018

Abstract

A steeper fall of fusion excitation function, compared to the predictions of coupled-channel (CC) models, at energies below the lowest barrier between the reaction partners, is termed as deep sub-barrier fusion hindrance. This phenomenon has been observed in many symmetric and nearly symmetric systems. Different physical origins of the hindrance have been proposed though a complete understanding is yet to be achieved. This work reports the measurement of the fusion (evaporation residue) cross sections for the system $^{19}F^{+181}Ta$, from above the barrier down to the energies where fusion hindrance is expected to come into play. CC calculation with standard Woods–Saxon potential gives a fair description of the fusion excitation function down

⁸ Present address: Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064, India.

⁹ Present address: Department of Nuclear Physics, Research School of Physics and Engineering, The Australian National University, Canberra ACT 2601, Australia.

¹⁰ Present address: TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, V6T 2A3, Canada.

¹¹ Present address: iThemba LABS, National Research Foundation, PO Box 722, 7129 Somerset West, South Africa.

¹² Present address: Department of Physics, Handique Girls' College, Guwahati 781001, Assam, India.