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Abstract: A circulant graph ��(�) is said to have the Cayley Isomorphism (CI) property if whenever ��(	) is 

isomorphic to ��(�), there is some a∈��
∗   for which S = aR. In this paper, we prove that ����(�), ����(	) and 

����(�) are isomorphic circulant graphs without CI-property where R = {1, 9n-1, 9n+1, 3��, 3��, . . . , 3����}, 

S = {3n+1, 6n-1, 12n+1, 3��, 3��, . . . , 3����}, T = {3n-1, 6n+1,12n-1, 3��, 3��, . . . ,3����}, k ≥ 3, gcd(��, 

��,..., ����) = 1 and  �, ��,��,...,����∈ℕ and also obtain new abelian groups from these isomorphic circulant 

graphs. 
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I. Introduction 
 Circulant graphs have been investigated by many authors [1]-[16]. An excellent account can be 

found in the book by Davis [3] and in [6]. A circulant graph ��(�) is said to have the Cayley Isomorphism 
(CI) property if whenever ��(	) is isomorphic to ��(�) there is some a∈ℤ� for which S = aR. Finding 

circulant graphs without CI-property is difficult.  Type-2 isomorphism, a new type of isomorphism of 

circulant graphs, other than already known Adam's isomorphism, was defined and studied in [10,13]. 

Type-2 isomorphic circulant graphs have the property that they are isomorphic circulant graphs without 

CI-property. 

Families of isomorphic circulant graphs of Type-2, each circulant graph of a family with �C  = gcd(n,DC) 

number of copies of a circulant subgraph for �C  = 2, 5 or 7 are obtained in [14]-[16]. In this paper, we 

prove that for n∈ℕ, k ≥ 3, R = {1, 9n-1, 9n+1, 3��, 3��, . . . , 3����}, S = {3n+1, 6n-1, 12n+1, 3��, 3��, . . . , 

3����} and T = {3n-1, 6n+1,12n-1, 3��, 3��, ... , 3����}, circulant graphs ����(�), ����(	) and ����(�) are 

Type-2 isomorphic with �M  = 3 where gcd(��,��,...,����) = 1 and ��, ��,...,����∈ℕ and obtain abelian 

groups (NO���(����(�)), o)  = (�1���(����(�)), o), (P���,Q(����(�)), o) and (�2���,Q(����(�)), o). 

Through-out this paper, for a set R = {D�, D�, … , D�}, ��(�) denotes circulant graph ��(D�, D�, … , D�) where  

1 ≤ D� < D� < ⋯ < D�  ≤ [n/2]. We consider only connected circulant graphs of finite order, V(��(�)) = 

{XY, X�, X�, … , X��� } with XM  adjacent to XM[\  for each r∈R, subscript addition taken modulo n and all cycles 

have length at least 3, unless otherwise specified, 0 ≤ i ≤ n-1. However when 
�

�
∈R, edge XMXM[

^

_

 is taken as a 

single edge for considering the degree of the vertex XM  or X
M[

^

_

 and as a double edge while counting the 

number of edges or cycles in ��(�), 0 ≤ i ≤ n-1. 

Circulant graph is also defined as a Cayley graph or digraph of a cyclic group. If a graph G is circulant, then 

its adjacency matrix A(G) is circulant. It follows that if the first row of the adjacency matrix of a circulant 

graph is [a�, a�, … , a�], then a�= 0 and aM= a��M[�, 2 ≤ i ≤ n [3]. We will often assume, with-out further 

comment, that the vertices are the corners of a regular n-gon, labeled clockwise. Circulant graphs 

��b(1,2,7) and ��b(2,3,5) are shown in Figures 1 and 2, respectively. 

Now, we present a few definitions and results that are required in this paper. 

Theorem 1.1 [10] If  ��(�) ≅ ��(	), then there is a bijection f from R to S so that for all r∈R, gcd(n, r) = 

gcd(n, f(r)). � 
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           Fig.1. ��b(1,2,7)                                                                     Fig.2. ��b(2,3,5) 

Definition 1.2 [9] A circulant graph ��(�) is said to have the CI-property if whenever ��(	) is isomorphic 

to ��(�), there is some a∈��
∗  for which S = aR.  

Lemma 1.3 [13] Let S be a non-empty subset of ℤ� and x∈ℤ� . Define a mapping Φ�,g: S � ℤ� such that 

Φ�,g(s) = xs for every s∈S under multiplication modulo n. Then Φ�,g  is bijective if and only if S = ℤ� and 

gcd(n, x) = 1.    � 

Definition 1.4 [1] Circulant graphs, ��(�) and ��(	) for R = {D�, D�, … , D�} and S ={i�, i�, … , i�} are Adam’s 
isomorphic or Type-1 isomorphic if there exists a positive integer x relatively prime to n with S = 
{kD�, kD�, … , kD�}�

∗  where < DM l�
∗ , the reflexive modular reduction of a sequence <DMl is the sequence 

obtained by reducing each DM  modulo n to yield DM
m and then replacing all resulting terms DM

m which are 

larger than 
�

�
 by n-DM

m.  

Lemma 1.5 [13] Let m,r,t∈ℤ� such that gcd(n, r) = m l 1 and 0 ≤ t ≤ 
�

n
 -1. Then the mapping θ�,\,o: ℤ��ℤ� 

defined by θ�,\,o(x) = x+jtm for every x∈ℤ� under arithmetic modulo n is bijective where x = qm+j,  

0 ≤ j ≤ m-1, 0 ≤ q ≤
�

n
 -1 and j,q∈ℤ� .       � 

Theorem 1.6 [13] Let P(��(�)) = {XY, X�, X�, … , X���}, V(p�) = {qY, q�, q�, … , q���}, R = {D�, D�, … , D� , � r

D� , n r D���, … , n r D�} and r∈R such that gcd(n, r) = m l 1. Then the mapping θ�,\,o: V(��(�)) 

�V(��(1,2,…,n-1)) = V(p�) defined by θ�,\,o(Xg) = qg[Con and θ�,\,o((Xg ,Xg[s)) = (θ�,\,o(Xg),θ�,\,o(Xg[s)) 

for every x∈ℤ� , x = qm+j, 0 ≤ j ≤ m-1, 0 ≤ q,t ≤ 
�

n
 -1and s∈R, under subscript arithmetic modulo n, is  

one-to-one, preserves adjacency and θ�,\,o(��(�)) ≅ ��(�) for t = 0,1,2,…,
�

n
 - 1.  � 

Definition 1.7 [13] For a given circulant graph ��(�)and for a particular value of t, 0 ≤ t ≤ 
�

n
 -1 if 

θ�,\,o(��(�)) = ��(	) for some S ⊆ [1,
�

�
] and S ≠ xR for all x∈φ

�
 under reflexive modulo n, then ��(�) and 

��(	) are called Type-2 isomorphic circulant graphs w.r.t. r, r∈R. In this case, subsets R and S of ℤ� are 
called Type-2 isomorphic subsets of  ℤ� w.r.t. r. 
Thus, clearly Type-2 isomorphic circulant graphs are circulant graphs without CI-property. 

Theorem 1.8 [13] For n ≥ 2, k ≥ 3, 1 ≤ 2s-1 ≤ 2n-1, n ≠ 2s-1, R = {2s-1, 4n-2s+1, 2��, 2��,...,2����} and S = 

{2n-2s+1, 2n+2s-1, 2��,2��,...,2����}, circulant graphs �v�(�) and �v�(	) are Type-2 isomorphic (and 

without CI-property) where gcd(��,��,...,����) = 1 and �, i, ��,��,...,����∈ℕ.   � 

Theorem 1.9 [13] For R = {2, 2s-1, 2s’-1}, 1 ≤ t ≤ [ 
�

�
], 1 ≤ 2s-1 < 2s’-1 ≤ [ 

�

�
] and n,s,s’,t∈ℕ if ��(�) and 

θ�,�,o(��(�)) are Type-2 isomorphic circulant graphs for some t, then n ≡ 0 (mod 8), 2s-1+2s’-1 = 
�

�
,  

t = 
�

v
 or 

Q�

v
, 2s’-1 ≠ 

�

v
, 1 ≤ 2s-1 ≤ 

�

w
 and n ≥ 16.   � 

Definition 1.10 [13] Let NO�(��(�)) = �1�(��(�)) = {Φ�,g(��(�)): x∈Φ�} = {��(xR): x∈Φ�} for a set R = 

{D�, D�, … , D� , � r D� , n r D���, … , n r D�}. Define ‘o’ in NO�(��(�)) such that Φ�,g(��(�))o Φ�,y(��(�)) = 

Φ�,gy(��(�)) and ��(xR) o ��(yR) = ��((xy)R) for every x,y∈Φ�, under arithmetic modulo n. Clearly, 

NO�(��(�)) is the set of all circulant graphs which are Adam’s isomorphic to ��(�) and (NO�(��(�)), o) 

= (�1�(��(�)), o) is an abelian group called the Adam’s group or the Type-1 group on ��(�) under ‘o’. 



Circulant Graphs without Cayley Isomorphism Property with�e = 3 

 

DOI: 10.9790/5728-1502022431                                  www.iosrjournals.org                                            26 | Page 

Definition 1.11 [13] Let P(��(�)) = {XY, X�, X�, … , X���}, V(p�) = {qY, q�, q�, … , q���}, r∈R, m,q,t,t’,x∈ℤ� 

such that gcd(n, r) = m l 1, x = qm+j, 0 ≤ j ≤ m-1 and 0 ≤q,t,t’ ≤
�

n
 -1. Define θ�,\,o: ℤ��ℤ�and θ�,\,o: 

V(��(�)) �V(��(1,2,…,n-1)) = V(p�) such that θ�,\,o(x) = x+jtm, θ�,\,o(Xg) = qg[Con  and θ�,\,o((Xg ,Xg[y)) 

= (θ�,\,o(Xg), θ�,\,o(Xg[y)) for every x∈ℤ� and y∈R, under subscript arithmetic modulo n. Let s∈ℤ� , P�,\ = 

{θ�,\,o: t = 0,1,…,
�

n
 -1}, P�,\(s) = {θ�,\,o(s): t = 0,1,…,

�

n
 -1} and P�,\(��(�)) = {θ�,\,o(��(�)): t = 0,1,…,

�

n
 -1}. 

Define ‘o’ in P�,\ such that θ�,\,oo θ�,\,om = θ�,\,o[om,  (θ�,\,ooθ�,\,om)(x) ( = θ�,\,o(θ�,\,om(x)) = θ�,\,o(x+jt’m) = 

(x+jt’m)+jtm = x+j(t+t’)m ) = θ�,\,o[om(x) and θ�,\,o(��(�))o θ�,\,om(��(�)) = θ�,\,o[om(��(�)) for every 

θ�,\,o ,θ�,\,om∈P�,\ where t+t’ is calculated under addition modulo 
�

n
. Clearly, (P�,\(s), o) and (P�,\(��(�)), o) 

are abelian groups for all s∈ℤ� . 

Properties of θ{,|,}(~{(�)) 

1.1 Let θ�,\,o(��(�)) = ��(	) and DM∈ℤ� such that gcd(n,DM) = gcd(n,r). Then, DM∈� if and only if DM∈	, 

follows from the definition of θ�,\,o . 

1.2 For a given circulant graph ��(�) and for a particular value of t, if θ�,\,o(��(�)) = ��(	) for some S ⊆ 

[1, [
�

�
]], then θ�,\,o[om(��(�)) = θ�,\,om(��(	)) for every t', 0 ≤ t,t' ≤ 

�

n
 -1 where gcd(n, D)  = m l 1. This 

follows from the fact, θ�,\,o[om(��(�)) = θ�,\,o�[o(��(�)) = θ�,\,om(θ�,\,o(��(�))) = θ�,\,om(��(	)). 

1.3 Let ��(�) and ��(	) be isomorphic circulant graphs. Then ��(	) = θ�,\,o(��(�)) for some t, 0 ≤ t ≤ 
�

n
r 1 if and only if ��(�) = θ

�,\,
^

�
�o

(��(	)). This follows from the fact that θ
�,\,

^

�
�o

(��(	)) = 

θ
�,\,

^

�
�o

(θ�,\,o(��(�))) = θ
�,\,

^

�
�o[o

(��(�)) = θ�,\,Y(��(�)) = ��(�) if and only if ��(	) = θ�,\,o(��(�)). 

1.4 For isomorphic circulant graphs ��(�)and ��(	), ��(	)∈�2�,\(��(�)) if and only if ��(	) = 

θ�,\,o(��(�)) for some t, 0 ≤ t ≤ 
�

n
r 1 and ��(�) and ��(	) are Type-2 isomorphic w.r.t. r if and only if 

��(�) = θ
�,\,

^

�
��

(��(	)) for some t, 0 ≤ t ≤
�

n
r 1 and ��(�) and ��(	) are Type-2 isomorphic w.r.t. r if 

and only if ��(�)∈�2�,\(��(	)). 

1.5 Let ��(�), ��(	) be two isomorphic circulant graphs of Type-2 w.r.t. r, r∈R,S and R ≠ S. Then, 

�2�,\(��(�)) = �2�,\(��(	)) follows from Property 1.4. 

1.6 Let ��(�) and ��(	) be two isomorphic circulant graphs and R ≠ S. Then, at least one of the following 

statements is true. 

(i) ��(	) = ��(k�), x∈φ
�

. That is ��(�) and ��(	) are Adam's isomorphic. 

(ii) �2�,\(��(�))= �2�,\(��(	)). This implies that ��(�) and ��(	) are Type-2 isomorphic circulant 

graphs w.r.t. r. 

(iii) ��(	) ≠ ��(k�) for all k∈φ
�

 and �2�,\(��(�)) ≠ �2�,\(��(	)) for any particular D∈ℤ� . That is 

circulant graphs ��(�) and ��(	) are neither Adam's isomorphic nor Type-2 isomorphic w.r.t. 

any particular D∈ℤ� . But their isomorphism is connected by a sequence of isomorphic 

transformations involving Type-2 isomorphisms w.r.t. different r's or Type-2 isomorphisms w.r.t. 

different r's as well as Adam's isomorphism.  

As an example the two circulant graphs ���(1,3,8,10) and ���(2,7,11,12) are isomorphic but they 

are neither Adam's nor Type-2 isomorphic w.r.t. 3 or 12 (or w.r.t. any particular r whose gcd with 

27 is l 1) because of the following. 

a) φ
��,g

(���(1,3,8,10)) ≠ ���(2,7,11,12) for every k∈φ
��

 (See Table-1). This implies, ���(1,3,8,10) 

and ���(2,7,11,12) are not Adam's isomorphic. 

b) Even though gcd(27, 3) = 3 = gcd(27, 12), the two circulant graphs ���(1,3,8,10) and 

���(2,7,11,12) don’t have common jump size, say m, such that gcd(27, m) = 3 or gcd(27, m) = 12 

and so they can’t be Type-2 isomorphic w.r.t. any m.  

c) φ
��,�

(���(2,7,11,12)) = φ
��,�

(���(2,7,11,12,15,16,20,25)) = ���(4,14,22,24,30,32,40,50) = 

���(4,14,22,24,3,5,13,23)  = ���(3,4,5,13) which implies that ���(3,4,5,13) and ���(2,7,11,12) 

are Adam's isomorphic. 

d) θ��,Q,�(���(1,3,8,10)) = θ��,Q,�(���(1,3,8,10,17,19,24,26)) = ���(4,3,14,13,23,22,24,32) = 

���(4,3,14,13,23,22,24,5) = ���(3,4,5,13) which implies, ���(3,4,5,13) ≅ ���(1,3,8,10). Also, 

θ��,Q,�(���(1,3,8,10)) = θ��,Q,�(���(1,3,8,10,17,19,24,26)) = ���(7,3,20,16,2,25,24,11) = 

���(2,3,7,11). θ��,Q,Q(���(1,3,8,10)) = θ��,Q,Q(���(1,3,8,10,17,19,24,26)) = 

���(10,3,26,19,8,1,24,17) = ���(1,3,8,10). Thus, ���(3,4,5,13) ≅ ���(2,7,11,12) and ���(3,4,5,13) 

≅ ���(1,3,8,10) which implies, ���(1,3,8,10) ≅ ���(2,7,11,12) but they are not Type-2 isomorphic 

w.r.t. any particular r. 
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Thus, we could see that for a given a circulant graph ��(�) one can make sequence of isomorphic 

transformations involving Adam's isomorphism as well as Type-2 isomorphisms w.r.t. different r's 
and obtain an isomorphic circulant graph ��(	) which may not be Adam's isomorphic or Type-2 

isomorphic w.r.t. a particular r to ��(�). And thus a new study is needed to find the sequence of 

isomorphisms involved among isomorphic circulant graphs. 

 

Table 1.Calculation of xr  under arithmetic modulo 27, k∈φ
��

 and D∈�. 

 Jump Size r 

Multiplier x 1 3 8 10 17 19 24 26 

2 2 6 16 20 7 11 21 25 

4 4 12 5 13 14 22 15 23 

5 5 15 13 23 4 14 12 22 

7 7 21 2 16 11 25 6 20 

8 8 24 10 26 1 17 3 19 

10 10 3 26 19 8 1 24 17 

11 11 6 7 2 25 20 21 16 

13 13 12 23 22 5 4 15 14 

 

Moreover, P�,\(��(�)) contains all isomorphic circulant graphs of Type 2 of ��(�) w.r.t. r, if exist. Let 

�2�,\(��(�)) = {��(�)} ∪ {��(	): ��(	) is Type-2 isomorphic to ��(�) w.r.t. r}. Thus, �2�,\(��(�)) = 

{��(�)} ∪ {θ�,\,o(��(�)): θ�,\,o(��(�)) = ��(	) and ��(	) is Type-2 isomorphic to ��(�) w.r.t. r, 0 ≤ t ≤ 
�

n
 -

1} ⊆ P�,\(��(�)) and (�2�,\(��(�)), o) is a subgroup of (P�,\(��(�)), o) (See Theorem 1.12.). Clearly, 

�1�(��(�)) ∩�2�,\(��(�)) = {��(�)}. ��(�) has Type-2 isomorphic circulant graph w.r.t. r if and only if  

�2�,\(��(�)) ≠ {��(�)} if and only if  �2�,\(��(�)) ∩ {��(�)} ≠ Φ if and only if |�2�,\(��(�))| l 1. 

Theorem 1.12 [11] Let ��(�) be any circulant graph, r∈R and gcd(n, r) l 1. Then, (�2�,\(��(�)), o) is a 

subgroup of (P�,\(��(�)), o).  

Proof Clearly, �2�,\(��(�)) ⊆ P�,\(��(�)). In �2�,\(��(�)),��(�) = θ�,\,Y(��(�)). If �2�,\(��(�)) = 

{θ�,\,Y(��(�)) = ��(�)}, then (�2(θ�,\,Y(��(�))), o) is a group that contains identity element only.  

 

If �2�,\(��(�)) ≠ {θ�,\,Y(��(�)) = ��(�)}, then let ��(	)∈�2�,\(��(�)) with R ≠ S. This implies, ��(	) = 

θ�,\,o(��(�)) for some t and ��(�) and ��(	) are Type-2 isomorphic w.r.t. r, 1 ≤ t ≤ 
�

n
 -1. And �2�,\(��(�)) 

= �2�,\(��(	)), R ≠ S using the Property 1.5.  

This implies, for 1 ≤ t,t' ≤ 
�

n
 -1 and R ≠ S, θ�,\,o(��(�)) = ��(	) and ��(�) = θ�,\,om(��(	)) = 

θ�,\,om(θ�,\,o(��(�))) = θ�,\,o�[o(��(�)) = θ�,\,om(��(�)) o θ�,\,o(��(�)), using the definition of θ�,\,o . This 

implies, θ�,\,om(��(�))oθ�,\,o(��(�)) = ��(�) = θ�,\,�(��(�)), using the definition of θ�,\,o ,θ�,\,o(��(�)) = 

��(	),θ�,\,om(��(	)) = ��(�)∈�2�,\(��(�)), 0 ≤ t,t' ≤ 
�

n
 -1. This implies that t+t' ≡ 0 (mod 

�

n
) and also 

θ�,\,om(��(�)) and θ�,\,o(��(�)) are inverse elements in (�2�,\(��(�)), o) which implies that ��(	) and 

θ�,\,om(��(�)) are inverse elements in (�2�,\(��(�)), o) for some t', 1 ≤t,t' ≤ 
�

n
 -1 and t+t' ≡ 0 (mod 

�

n
). This 

implies, t' = 
�

n
–t and θ�,\,om(��(�))∈�2�,\(��(�)), 1 ≤ t,t' ≤ 

�

n
 -1. 

Also, we have if ��(�) and θ�,\,o(��(�)) are Type-2 isomorphic for a particular t, then ��(�) and 

θ
�,\,

^

�
�o

(��(�)) are also Type-2 isomorphic circulant graphs. This implies, θ�,\,om(��(�))∈�2�,\(��(�)) 

and hence ��(	) and θ�,\,om(��(�)) are inverse elements in (�2�,\(��(�)), o) for some t' where 1 ≤ t,t' ≤
�

n
 -

1 and t+t' ≡ 0 (mod 
�

n
). 

Other laws of Abelian group are easy to prove. Hence the result follows.                 � 

Definition 1.13 [15] For any circulant graph ��(�), if group (�2�,\(��(�)), o) exists, then it is called the 

Type-2 group of ��(�) w.r.t. r  under ‘o’. 

Theorem 1.14 [14] For n ≥ 2, k ≥ 3, 1 ≤ 2s-1 ≤ 2n-1, n ≠ 2s-1, R = {2s-1, 4n-2s+1, 2��, 2��,...,2����} and S 

= {2n-(2s-1), 2n+2s-1, 2��,2��,...,2����}, �2v�,�(�v�(�)) = �2v�,�(�v�(	)), (�2v�,�(�v�(�)), o) = 

(�2v�,�(�v�(	)), o) is a Type-2 group of order 2 and (�2v�,�(�v�(� ∪ 8� r �)), o) = (�2v�,�(�v�(	 ∪ 8� r

	)), o) where gcd(��,��,...,����) = 1 and �, i, �� ,��,...,����∈ℕ.                                        � 

Obtaining new families of circulant graphs without CI-property is the motivation for this work. For all 

basic ideas in graph theory, we follow [5]. 

 



Circulant Graphs without Cayley Isomorphism Property with�e = 3 

 

DOI: 10.9790/5728-1502022431                                  www.iosrjournals.org                                            28 | Page 

 

2 Family of Type-2 Isomorphic Circulant Graphs and Abelian Groups 
Theorem 2.1 For �∈ℕ, R = {1, 3, 9n-1, 9n+1}, S = {3, 3n+1, 6n-1, 12n+1} and T = {3, 3n-1, 6n+1, 12n-1}, 
����(�),  ����(	) and  ����(�) are isomorphic circulant graphs.    

Proof: Here, we prove, θ���,Q,�(����(�)) = ����(	) and  θ���,Q,��(����(�)) = ����(�) when R = {1, 3, 9n-1, 

9n+1}, S = {3, 3n+1, 6n-1, 12n+1} and T = {3, 3n-1, 6n+1, 12n-1}. To simplify our calculation let us 

consider R = {1, 3, 9n-1, 9n+1, 18n-1, 18n+1, 27n-3, 27n-1}, S = {3, 3n+1, 6n-1, 12n+1, 15n-1, 21n+1, 

24n-1, 27n-3} and T = {3, 3n-1, 6n+1, 12n-1, 15n+1, 21n-1, 24n+1, 27n-3}. 

Clearly, θ�,\,o: P(��(�)) → P(p�) is a bijective function and by the definition of θ�,\,o , we get θ���,Q,�(3) = 

3, θ���,Q,�(27� r 3) =  27n-3, θ���,Q,�(1) =  3n+1, θ���,Q,�(9n+1) = 12n+1, θ���,Q,�(18n+1) = 21n+1, 

θ���,Q,�(9n-1) = 15n-1, θ���,Q,�(18n-1) = 24n-1 and θ���,Q,�(27� r 1) = 6n-1. This implies, 

θ���,Q,��(����(�)) = ����(	) and ����(�) ≅ ����(	). 

Similarly, θ���,Q,��(3) = 3, θ���,Q,��(27� r 3) = 27n-3, θ���,Q,��(1) = 6n+1, θ���,Q,��(9n+1) = 15n+1, 

θ���,Q,��(18n+1) = 24n+1, θ���,Q,��(9n-1) = 21n-1, θ���,Q,��(18n-1) = 3n-1 and θ���,Q,��(27� r 1) = 12n-

1. This implies, θ���,Q,��(����(�)) = ����(�) and ����(�) ≅ ����(�). This implies that ����(�) ≅ ����(	) ≅ 

����(�). Hence the result.     � 

Theorem 2.2 For �∈ℕ, R = {1, 3, 9n-1, 9n+1}, S = {3, 3n+1, 6n-1, 12n+1} and T = {3, 3n-1, 6n+1, 12n-1}, 
θ���,Q,�(����(�)) = ����(	), θ���,Q,�(����(	)) = ����(�) and θ���,Q,�(����(�)) = ����(�) and ����(�), 

����(	) and ����(�) are Type-2 isomorphic circulant graphs. 

Proof: For �∈ℕ, R = {1, 3, 9n-1, 9n+1}, S = {3, 3n+1, 6n-1, 12n+1} and T = {3, 3n-1, 6n+1, 12n-1}, 
θ���,Q,�(����(�)) = ����(	), θ���,Q,�(����(	)) = ����(�), θ���,Q,�(����(�)) = ����(�) and ����(�) ≅ 

����(	) ≅ ����(�) using Theorem 2.1. Also, for a given �∈ℕ, the set of jump sizes of the three circulant 

graphs are different. Here, R ∩S = {3} and so if ����(�) and ����(	) are Type-2 isomorphic, then they are 

Type-2 isomorphic w.r.t. m = 3 only.  

Claim: For R ={1, 3, 9n-1, 9n+1}, S = {3, 3n+1, 6n-1, 12n+1} and �∈ℕ, ����(�) and ����(	) are Type-2 
isomorphic w.r.t. m = 3. 
If not, they are of Adam's isomorphic. This implies, there exists i∈ℕ such that gcd(27n, s) = 1 and 

����(i�) = ����(	) where s = 3x-2 or s = 3x-1, k∈ℕ. Now, let s = 3x-2 such that gcd(27n, 3x-2) = 1, 

����((3k r 2)�) = ����(	) and i∈ℕ.  This implies, (3x-2){1, 3, 9n-1, 9n+1, 18n-1, 18n+1, 27n-3, 27n-1} 

= {3, 3n+1, 6n-1, 12n+1, 15n-1, 21n+1, 24n-1, 27n-3}, under arithmetic modulo 27n. This implies, 3(3x-
2), (3x-2)(27n-3), 3+27��� and 27n-3+27��� are the only numbers, each is a multiple of 3, in the two 

sets for some �� , ��∈ℕY. Thus the following two cases arise. 

Case i. 3(3x-2) = 3+27���, ��∈ℕY, 1 ≤ 3x-2 ≤ 27n-1. 

In this case, �� = 0 or 1 or 2 since 1 ≤ 3x-2 ≤ 27n-1 and n,x∈ℕ. When ��= 0, 3x-2 = 1; �� = 1, 3x-2 = 

9n+1; �� = 2, 3x-2 = 18n+1 and in each case, the two graphs are the same. The jump sizes of the 

circulant graph corresponding to Adam's isomorphism when s = 3x-2 = 9n+1 and s = 3x-2 = 18n+1 are 

given in Table 2.  

Case ii. 3(3x-2) = 27n-3+27���, ��∈ℕY, x∈ℕ, 1 ≤ 3x-2 ≤ 27n-1. 

In this case, �� = 0 or 1 or 2 since 1 ≤ 3x-2 ≤ 27n-1 and n,x∈ℕ. When ��= 0, 3x-2 = 9n-1; ��= 1, 3x-2 = 

18n-1; �� = 2, 3x-2 = 27n-1 and in each case, the two graphs are the same. The jump sizes of the circulant 

graph corresponding to Adam's isomorphism when s = 3x-2 = 9n-1, s = 3x-2 = 18n-1 and s = 3x-2 = 

27n-1 are given in Table 2. 

Table 2. Calculation of rs under arithmetic modulo 27n where s = 3x-2 or 3x-1 

Now, consider the case when s = 3x-1 with gcd(27n, 3x-1) = 1, ����(i�) = ����(	) and k∈ℕ. This implies, 

(3x-1){1, 3, 9n-1, 9n+1, 18n-1, 18n+1, 27n-3, 27n-1} = {3, 3n+1, 6n-1, 12n+1, 15n-1, 21n+1, 24n-1, 

27n-3}, under arithmetic modulo 27n. This implies, 3(3x-1), (3x-1)(27n-3), 3+27n�� and 27n-3+27n�� 

are the only numbers, each multiple of 3, in the two sets for some ��, ��∈ℕY. The following two cases 

arise.  

 Jump Size r 

Multiplier s 1 9n-1 9n+1 18n-1 18n+1 27n-1 

9n-1 9n-1 9n+1 27n-1 1 18n-1 18n+1 

9n+1 9n+1 27n-1 18n+1 9n-1 1 18n-1 

18n-1 18n-1 1 9n-1 18n+1 27n-1 9n+1 

18n+1 18n+1 18n-1 1 27n-1 9n+1 9n-1 

27n-1 27n-1 18n+1 18n-1 9n+1 9n-1 1 
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Case i. 3(3x-1) = 3+27���,  ��∈ℕY, x∈ℕ, 1 ≤ 3x-1 ≤ 27n-1. 

In this case, �� = 0 or 1 or 2 since 1 ≤ 3x-1 ≤ 27n-1 and n,x∈ℕ. When ��= 0, 3x-1 = 1; �� = 1, 3x-1= 9n+1; 

�� = 2, 3x-1 = 18n+1 and in each case, ����(i�) = ����((3k r 1)�) = ����(	). The jump sizes of the 

circulant graph corresponding to Adam's isomorphism when s = 3x-1 = 9n+1 and s = 3x-1 = 18n+1 are 

given in Table 2.  

In this case, �� = 0 or 1 or 2 since 1 ≤ 3x-1 ≤ 27n-1 and n,x∈ℕ. When ��= 0, 3x-1 = 9n-1; ��= 1, 3x-1 = 

18n-1; �� = 2, 3x-1 = 27n-1 and in each case, ����(i�) = ����((3k r 1)�)= ����(	). The jump sizes of the 

circulant graph corresponding to Adam's isomorphism when s = 3x-1 = 9n-1, s = 3x-1 = 18n-1 and s = 

3x-1 = 27n-1 are given in Table 2. 

Case ii. 3(3x-1) = 27n-3+27���, ��∈ℕY, x∈ℕ, 1 ≤ 3x-1 ≤ 27n-1. 

This shows that the isomorphic circulant graphs ����(�) and ����(	) for R = {1, 3, 9n-1, 9n+1} and S = 

{3, 3n+1, 6n-1, 12n+1} are not of Type-1, n∈ℕ. 
Now consider isomorphic circulant graphs ����(	) and ����(�) for S = {3, 3n+1, 6n-1, 12n+1} and T = 

{3, 3n-1, 6n+1, 12n-1}, n∈ℕ. Here, S ∩T = {3} and so if ����(	) and ����(�) are Type-2 isomorphic, then 

they are Type-2 isomorphic circulant graphs w.r.t. m = 3 only. 

Claim: For �∈ℕ, S = {3, 3n+1, 6n-1, 12n+1} and T = {3, 3n-1, 6n+1, 12n-1}, ����(	) and ����(�) are 
Type-2 isomorphic. 
If not, they are of Adam's isomorphic. This implies, there exists i∈ℕ such that gcd(27n, s) = 1 and 

����(i	) = ����(�) where s = 3x-2 or s = 3x-1, k∈ℕ. Now, let s = 3x-2 such that gcd(27n, 3x-2) = 

1,����(i	) = ����((3k r 2)	) = ����(�), k∈ℕ.  This implies, (3x-2){3, 3n+1, 6n-1, 12n+1, 15n-1, 21n+1, 

24n-1, 27n-3} = {3, 3n-1, 6n+1, 12n-1, 15n+1, 21n-1, 24n+1, 27n-3}, under arithmetic modulo 27n. Now, 
3(3x-2), (3x-2)(27n-3), 3+27��� and 27n-3+27��� are the only numbers, each is a multiple of 3, in the 

two sets for some ��, ��∈ℕY. Thus the following two cases arise. 

Case i. 3(3x-2) = 3+27���,  ��∈ℕY, x∈ℕ, 1 ≤ 3x-2 ≤ 27n-1. 

In this case, �� = 0 or 1 or 2 since 1 ≤ 3x-2 ≤ 27n-1 and n,x∈ℕ. This implies, when ��= 0, 3x-2 = 1; �� = 1, 

3x-2 = 9n+1; �� = 2, 3x-2 = 18n+1 and in each case, ����(i	) = ����((3k r 2)	) = ����(�). The jump 

sizes of the circulant graph corresponding to Adam's isomorphism when s = 3x-2 = 9n+1 and s = 3x-2 = 

18n+1 are given in Table 3.  

Case ii. 3(3x-2) = 27n-3+27���, ��∈ℕY, x∈ℕ, 1 ≤ 3x-2 ≤ 27n-1. 

In this case, �� = 0 or 1 or 2 since 1 ≤ 3x-2 ≤ 27n-1 and n,x∈ℕ. When ��= 0, 3x-2 = 9n-1; �� = 1, 3x-2 = 

18n-1; �� = 2, 3x-2 = 27n-1 and in each case, ����(i	) = ����((3k r 2)	) = ����(�). The jump sizes of the 

circulant graph corresponding to Adam's isomorphism when s = 3x-2 = 9n-1, s = 3x-2 = 18n-1 and s = 

3x-2 = 27n-1 are given in Table 3. 

 
Table 3. Calculation of rs under arithmetic modulo 27n where s = 3x − 2 or 3x– 1. 

 Jump Size r 

Multiplier s 3n+1 6n-1 12n+1 15n-1 21n+1 24n-1 

9n-1 6n-1 12n+1 24n-1 3n+1 15n-1 21n+1 

9n+1 12n+1 24n-1 21n+1 6n-1 3n+1 15n-1 

18n-1 15n-1 3n+1 6n-1 21n+1 24n-1 12n+1 

18n+1 21n+1 15n-1 3n+1 24n-1 12n+1 6n-1 

27n-1 24n-1 21n+1 15n-1 12n+1 6n-1 3n+1 

 
This shows that the isomorphic circulant graphs ����(�)and ����(	) for R = {1, 3, 9n-1, 9n+1} and S = {3, 

3n+1, 6n-1, 12n+1} are not of Type-1, n∈ℕ. 
Now consider the case when s = 3x-1 with gcd(27n, 3x-1) = 1, ����((3k r 1)	) = ����(�) and k∈ℕ. This 

implies, (3x-1){3, 3n+1, 6n-1, 12n+1, 15n-1, 21n+1, 24n-1, 27n-3} = {3, 3n-1, 6n+1, 12n-1, 15n+1, 21n-

1, 24n+1, 27n-3}, under arithmetic modulo 27n. This implies, 3(3x-1), (3x-1)(27n-3), 3+27n�� and 27n-

3+27n�� are the only numbers, each is a multiple of 3, in the two sets for some ��, ��∈ℕY. The following 

two cases arise. 

Case i. 3(3x-1) = 3+27���,  ��∈ℕY, x∈ℕ, 1 ≤ 3x-1 ≤ 27n-1. 

In this case, �� = 0 or 1 or 2 since 1 ≤ 3x-1 ≤ 27n-1 and n,x∈ℕ. When ��= 0, 3x-1 = 1; �� = 1, 3x-1 = 

9n+1; �� = 2, 3x-1 = 18n+1 and in each case, ����(i	) = ����((3k r 1)	) = ����(�). The jump sizes of 

the circulant graph corresponding to Adam's isomorphism when s = 3x-1 = 9n+1 and s = 3x-1 = 18n+1 

are given in Table 3. 

Case ii. 3(3x-1) = 27n-3+27���, ��∈ℕY, x∈ℕ, 1 ≤ 3x-1 ≤ 27n-1. 
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In this case, �� = 0 or 1 or 2 since 1 ≤ 3x-1 ≤ 27n-1 and n,x∈ℕ. When ��= 0, 3x-1 = 9n-1; ��= 1, 3x-1 = 

18n-1; �� = 2, 3x-1 = 27n-1 and in each case, ����(i	) = ����((3k r 1)	) = ����(�). The jump sizes of the 

circulant graph corresponding to Adam's isomorphism when s = 3x-1 = 9n-1, s = 3x-1 = 18n-1 and s = 

3x-1 = 27n-1 are given in Table 3. 
This shows that the isomorphic circulant graphs ����(	) and ����(�) for S  = {3, 3n+1, 6n-1, 12n+1} and 

T  = {3, 3n-1, 6n+1, 12n-1} are not of Type-1, n∈ℕ. 
Similarly, we can prove that isomorphic circulant graphs ����(�) and ����(�) for R = {1, 3, 9n-1, 9n+1} 

and T  = {3, 3n-1, 6n+1, 12n-1} are not of Type-1, n∈ℕ. 
Thus, all the 3 different isomorphic circulant graphs ����(�), ����(	) and ����(�)  for R = {1, 3, 9n-1, 

9n+1}, S = {3, 3n+1, 6n-1, 12n+1} and T = {3, 3n-1, 6n+1, 12n-1} are not of Type-1. Moreover, 

θ���,Q,�(����(�)) = ����(	), θ���,Q,�(����(	)) = ����(�) and θ���,Q,�(����(�)) = ����(�), �∈ℕ. Hence the 

result follows.           � 

Theorem 2.3 For k ≥ 3, R = {1, 9n-1, 9n+1, 3��, 3��, . . . , 3����}, S = {3n+1, 6n-1, 12n+1, 3��, 3��, . . . , 

3����} and T = {3n-1, 6n+1,12n-1, 3��, 3��, . . . , 3����}, circulant graphs ����(�), ����(	) and ����(�) are 

Type-2 isomorphicwith �M  = 3 and without CI-property where gcd(��, ��, . . . , ����) = 1 and 

�, ��,��,...,����∈ℕ. 

Proof: When R = {1, 3, 9n-1, 9n+1}, S = {3, 3n+1, 6n-1, 12n+1} and T = {3, 3n-1, 6n+1,12n-1}, ����(�), 

����(	) and ����(�) are Type-2 isomorphic circulant graphs, using Theorem 2.2, n∈ℕ.  Lemma 1.5 helps 

us while searching for possible value(s) of t such that the transformed graph θ�,\,o(��(�)) is circulant of 

the form ����(	) for some S ⊆ [1, 
�

�
], the calculation on DCs which are integer multiples of m = gcd(n, r) 

need not be done as there is no change in these DCs under the transformation θ�,\,o . This implies when R = 

{1, 9n-1, 9n+1, 3��, 3��, . . . , 3����}, S = {3n+1, 6n-1, 12n+1, 3��, 3��, . . . , 3����} and T = {3n-1, 

6n+1,12n-1, 3��, 3��, . . . , 3����}, circulant graphs ����(�), ����(	) and ����(�) are Type-2 isomorphic 

where k ≥ 3, gcd(��,��,...,����) = 1 and  �, ��,��,...,����∈ℕ. Type-2 isomorphic circulant graphs are graphs 

without CI-property. Hence the result follows.       � 
Type 2 isomorphic circulant graphs ���(1,3,8,10), ���(3,4,5,13) and ���(2,3,7,11) are given in Figures 

3,4,5, respectively. 

 
            Fig.3. ���(1,3,8,10).               Fig.4.  ���(3,4,5,13).                    Fig.5.���(2,3,7,11) 

 

II. Conclusion 
 The results derived in this paper and in [13] on circulant graphs of Type-2 isomorphism and without 

CI-property are based on circulant graphs with three and two copies of isomorphic circulant subgraphs, 

respectively. One can try similar results on circulant graphs with m = gcd(n, r) is odd and > 3. 
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