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Cn(R) denotes circulant graph Cn(r1, r2, . . . , rk) of order n for a set R =

{r1, r2, . . . , rk} where 1 ≤ r1 < r2 < . . . < rk ≤
[

n
2

]

. Circulant graph Cn(R)

is said to have the Cayley Isomorphism (CI) property if whenever Cn(S)
is isomorphic to Cn(R), there is some a ∈Z∗n for which S = aR. In this
paper, isomorphic properties of circulant graphs that includes (i)
Self-complementary circulant graphs; (ii) Type-2 isomorphism, a new
type of isomorphism other than already known Adam’s isomorphism of
circulant graphs and (iii) Cartesian product and factorization of
circulant graphs similar to the theory of product and factorization of
natural numbers are studied. New abelian groups are obtained from
these isomorphic circulant graphs. Type-2 isomorphic circulant graphs
have the property that they are isomorphic graphs without Cayley
Isomorphism (CI) property and thereby new families.
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1 Introduction

This paper is an extension of work originally pre-
sented in ICMSAO2017 [1] and covers the au-
thor’s study on a few isomorphic properties of cir-
culant graphs that includes (i) Existence of self-
complementary circulant graphs; (ii) Type-2 isomor-
phism, a new type of isomorphism other than al-
ready knownAdam’s isomorphism of circulant graphs
that helps to obtain graphs without CI-property and
abelian groups and (iii) Cartesian product and fac-
torization of circulant graphs similar to the theory of
product and factorization of natural numbers.

Beauty comes out of symmetry as well as asym-
metry. Investigation of symmetries/asymmetries of
structures yield powerful results in Mathematics. Cir-
culant graphs form a class of highly symmetric math-
ematical (graphical) structures. In 1846 Catalan (cf.
[2]) introduced circulant matrices and properties of
circulant graphs have been investigated by many au-
thors [1-20]. An excellent account of circulant matri-
ces can be found in the book by Davis [2] and circulant
graphs in the article [11].

If a graph G is circulant, then its adjacency matrix
A(G) is circulant. It follows that if the first row of the
adjacency matrix of a circulant graph is [a1, a2, . . . , an],
then a1 = 0 and ai = an−i+2, 2 ≤ i ≤ n [15, 17].

Through-out this paper, for a set R = {r1, r2, . . . , rk},

Cn(R) denotes circulant graph Cn(r1, r2, . . . , rk) where

1 ≤ r1 < r2 < . . . < rk ≤
[

n
2

]

. Only connected circu-

lant graphs of finite order are considered, V (Cn(R))
= {v0, v1, v2, . . . , vn−1} with vi adjacent to vi+r for each
r ∈ R, subscript addition taken modulo n and all cy-
cles have length at least 3, unless otherwise specified,
0 ≤ i ≤ n−1.However when n

2 ∈ R, edge vivi+ n
2
is taken

as a single edge for considering the degree of the ver-
tex vi or vi+ n

2
and as a double edge while counting the

number of edges or cycles in Cn(R), 0 ≤ i ≤ n−1. Gen-

erally, write Cn for Cn(1) and Cn(1,2, . . . ,
⌊

n
2

⌋

) for Kn.

Wewill often assume, with-out further comment, that
the vertices are the corners of a regular n−gon, labeled
clockwise. Circulant graphs C16(1,2,7), C16(2,3,5),
C27(1,3,8,10), C27(3,4,5,13) and C27(2,3,7,11) are
shown in Figures 1 - 5. Now, let us consider the fol-
lowing definitions and results that are useful in the
subsequent sections.

Definition 1.1. [17] Let n and r be positive integers
with n ≥ 4 and r < n

2 . Then, clearly, Cn(r) consists of a
collection of cycles (v0vrv2r . . . v0), (v1v1+rv1+2r . . . v1), . . . ,
(vr−1v2r−1v3r−1 . . . vr−1). If d = gcd(n,r), then there are d
such disjoint cycles, each of length n

d . We say that each of
these cycles is of period r, length n

d and rotation r
d .

If r = n
2 , then obviously Cn(r) is just a 1 − f actor.

Since Cn(R) is just the union of the cycles Cn(r) for
r ∈ R, we have a decomposition of Cn(R).
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Theorem 1.2. [17] Let r ∈ R. Then, in Cn(R), the
length of a cycle of period r is n

gcd(n,r)
and the number

of disjoint periodic cycles of period r is gcd(n,r). �

Corollary 1.3. [17] In Cn(R), the length of a cycle of
period r is n if and only if gcd(n,r) = 1, r ∈ R. �

Remark 1.4. [17] Let |R| = k. Then, the circulant
graphCn(R) for a set R = {r1, r2, . . . , rk} is (2k−1)−regular
if n

2 ∈ R and 2k − regular otherwise. �

The following Lemmas are useful to obtain one-to-
one mappings.

Lemma 1.5. [15] Let A and B be two non-empty sets.
Let f : A→ B be a mapping. Then, f is one-to-one if and
only if f /A′ is one-to-one for every non-empty subset A′

of A. �

Lemma 1.6. [15] Let A and B be non-empty sets and
A1,A2, . . . ,Ak be a partition of A (each Ai being non-
empty, i = 1,2, . . . , k). Let f : A→ B be a mapping. Then
f is one-to-one if and only if f /Ai

is one-to-one for every
i, i = 1,2, . . . , k. �

2 On self-complementary circu-

lant graphs

In 1962, Horst Sachs [14] proved that the sufficient
condition for the existence of a self-complementary
circulant graph of order n is that every prime factor
p of n should satisfy p ≡ 1 (mod 4). He also conjec-
tured that the sufficient condition is a necessary one.
We have proved that the self-complementary circu-
lant graph on n vertices does not exist if n has any
prime factor which is not of the form 4m + 1, m ∈ N.
Thereby, we establish that the sufficient condition is
also a necessary one. The proof is based on counting
the number of disjoint cycles of a particular length in
Kn and is given in this section [4, 17]. Graphs given
in Figures 6 and 7 are self-complementary but not of

circulant whereas graphs given in Figures 8 and 9 are
self-complementary circulant graphs.

Theorem 2.1. [17] If Cn(R) � Cn(S), then there is a
bijection f from R to S so that for all r ∈ R, gcd(n,r) =
gcd(n,f (r)).

Proof. The proof is by induction on the order of
R.

Theorem 2.2. [9] If graph G of order n is self-
complementary, then n ≡ 0,1 (mod 4). �

Theorem 2.3. [17] If Cn(R) for a set R = {r1, r2, . . . , rk}
is self-complementary, then n ≡ 1 (mod 4).

Proof. Using Theorem 2.2, we get n ≡ 0,1 (mod 4).
When n is even, a circulant graph is of even degree
if and only if its complement is of odd degree since
any circulant graph is a regular graph. Thus, self-
complementary circulant graph of even order doesn’t
exist. Hence, we get the result.

Theorem 2.4. [17] If Cn(R) for a set R = {r1, r2, . . . , rk}
is self-complementary, then n = 4m + 1, k = m and |Si | is

even where Si = {j : gcd(n, j) = gcd(n, i), 1 ≤ j ≤
[

n
2

]

}, for

all i, i = 1,2, . . . ,
[

n
2

]

.

Proof. Using Theorem 2.3, we get, n = 4m + 1. This
implies that the degree (of each vertex) of a self-
complementary circulant graph of order 4m+ 1 is 2m
which implies k =m.

Let C4m+1(R) be a self-complementary circulant
graph for R = {r1, r2, . . . , rm}. If it contains a cy-
cle of period r (and of length n

gcd(n,r)
, using Theo-

rem 1.2), then its complement also contains a peri-
odic cycle of period, say, s such that n

gcd(n,s)
= n

gcd(n,r)
,

1 ≤ r, s ≤
[

n
2

]

, using Theorem 1.2. This implies that

gcd(n,s) = gcd(n,r). Here we consider that the cycles
of periods ri and n− ri are the same in Cn(r1, r2, . . . , rk),
1 ≤ i ≤ k. Combining the above arguments, we get the
result.
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Remark 2.5. The above theorem states that if a self-
complementary circulant graph of order n exists, then
n = 4m + 1 and so it is 2m-regular and the number of
periodic cycles of length i in Kn is always even for each i,

1 ≤ i ≤
[

n
2

]

.

Theorem 2.6. [17] Self-complementary circulant graph
of order n doesn’t exist when n has any prime factor of the
form 2(2m− 1) + 1, m ∈N.

Proof. Using Theorem 2.3, n = 4a+1, a+1 ∈N.

Let n = p
n1
1 p

n2
2 . . .p

nj
j where p1,p2, . . . ,pj are the

(odd) prime factors of n. Let pi , 4m + 1 for at least
one i, 1 ≤ i ≤ j and for any m ∈ N. This implies,
pi = 2(2q − 1) + 1 for some q ∈ N. Consider the cir-
culant graph C4a+1(1,2, . . . ,2a) � K4a+1 = Kn. Let r be
the natural number such that r = n

pi
.

Aim To find out all natural numbers lying between 1
and n such that g.c.d. of each one of them with n is
exactly r.

Let gcd(n,pr + s) = r where p,s + 1 ∈ N such that
0 ≤ s < r and 1 ≤ pr + s ≤ n = rpi . This implies that
s = 0 and so gcd(n,rp+ s) = gcd(n,rp) = gcd(rpi , rp) = r
where 1 ≤ pr ≤ pir = n. Thus we get gcd(p,pi ) = 1
where p ≤ pi which is greater than 1. Therefore the
possible values of p are 1,2, . . . ,pi − 1.

Thus r,2r,3r, . . . , (pi − 1)r are the only numbers ly-
ing between 1 and n such that g.c.d. of nwith each one
of them is exactly r. This implies r,2r,3r, . . . , (pi − 1)r
are the possible periods of cycles of length pi each, in

Cn(1,2, . . . ,
[

n
2

]

) since the length of a cycle of period rp

in Cn(1,2, . . . ,
[

n
2

]

) is n
gcd(n,rp)

=
rpi

gcd(rpi ,rp)
=

pi
gcd(pi ,p)

= pi
for p = 1,2, . . . ,pi − 1, using Theorem 1.2.

In Cn(1,2, . . . ,
[

n
2

]

),

the cycles of period r and n − r(= (pi − 1)r) are the
same,

the cycles of period 2r and (pi − 2)r are the same,
. . .
the cycles of period

(pi−1)r
2 and

(pi+1)r
2 are the same.

Thus, there are
pi−1
2 number of possible distinct

periodic cycles of (periods r,2r, . . . ,
pi−1
2 and) length pi ,

each in Cn(1,2, . . . ,
[

n
2

]

).

Now,
pi−1
2 = 2q − 1 is an odd number. This im-

plies, any circulant graph of order n and its comple-
mentary circulant graph contain unequal number of
periodic cycles of length pi , each. This implies that
self-complementary circulant graph of order n does
n’t exist when n contains any prime factor of the form
2(2q − 1) + 1, q ∈N, by Remark 2.5.

Thus, when n = 9,21,33,49,57,69,77,81,93, etc.,
self-complementary circulant graph doesn’t exist on n
vertices, by Theorem 2.6, even though in each case,
n ≡ 1 (mod 4).

Now, by combining Theorem 2.6 and the sufficient
condition for the existence of a self-complementary
circulant graph of order n, we get the following result.

Theorem 2.7. [17] The necessary and sufficient condi-
tion for the existence of a self-complementary circulant

graph of order n is that each prime factor p of n should
satisfy p ≡ 1(mod 4). �

3 On Isomorphism of Circulant

Graphs

In this section, Type-2 isomorphism, a new type of iso-
morphism different from already known Adam’s iso-
morphism of circulant graphs, main results related to
it and families of new abelian groups obtained from
isomorphic circulant graphs are presented. Type-2
isomorphic circulant graphs have the property that
they are isomorphic graphs without Cayley Isomor-
phism (CI) property.

Definition 3.1. [12] A circulant graph Cn(R) is said
to have the CI-property if whenever Cn(S) is isomorphic
to Cn(R), there is some a ∈Z∗n for which S = aR.

Lemma 3.2. [16] Let S be a non-empty subset of Zn

and x ∈ Zn. Define a mapping Φn,x : S → Zn such that
Φn,x(s) = xs for every s ∈ S under multiplication mod-
ulo n. Then, Φn,x is bijective if and only if S = Zn and
gcd(n,x) = 1. �

Definition 3.3. [3] Circulant graphs Cn(R) and Cn(S)
for R = {r1, r2, . . . , rk} and S = {s1, s2, . . . , sk} are Adam’s
isomorphic if there exists a positive integer x relatively
prime to n with S = {xr1, xr2, . . ., xrk}

∗
n where < ri >

∗
n, the

reflexive modular reduction of a sequence < ri > is the se-
quence obtained by reducing each ri modulo n to yield r ′i
and then replacing all resulting terms r ′i which are larger
than n

2 by n− r ′i .

Lemma 3.4. [16] Let m,r, t ∈ Zn ∈ gcd(n,r) = m > 1
and 0 ≤ t ≤ n

m − 1. Then the mapping Θn,r,t : Zn → Zn

defined byΘn,r,t(x)= x+jtm for every x ∈Zn under arith-
metic modulo n is bijective where x = j+qm, 0 ≤ j ≤m−1,
0 ≤ q ≤ n

m − 1 and j,q ∈Zn. �

Theorem 3.5. [16] Let V (Cn(R)) = {v0, v1, . . . , vn−1},
V (Kn) = {u0, u1, . . . ,un−1}, r ∈ R and gcd(n,r) = m >
1. Then the mapping Θn,r,t : V (Cn(R)) → V (Kn) de-
fined by Θn,r,t(vx) = ux+jtm and Θn,r,t((vx, vx+s)) =
(Θn,r,t(vx),Θn,r,t(vx+s)) for every x ∈ Zn, x = j + qm,
0 ≤ j ≤ m − 1, 0 ≤ q, t ≤ n

m − 1 and s ∈ R, under sub-
script arithmetic modulo n, for a set R = {r1, r2, . . ., rk ,
n − rk , n − rk−1, . . ., n − r1} is one-to-one, preserves adja-
cency and Θn,r,t(Cn(R)) � Cn(R) for t = 0,1,2, . . . , nm − 1.
�

Definition 3.6. [16] For a given Cn(R) and for a par-
ticular value of t, 0 ≤ t ≤ n

m − 1, if Θn,r,t(Cn(R)) = Cn(S)
for some S ⊆ [1, n2 ] and S , xR for all x ∈ Φn under re-
flexive modulo n, then Cn(R) and Cn(S) are called Type-2
isomorphic circulant graphs w.r.t. r, r ∈ R. In this case,
subsets R and S of Zn are called Type-2 isomorphic sub-
sets of Zn w.r.t. r.

Clearly, Type-2 isomorphic circulant graphs are
circulant graphs without CI-property. We obtained
the following results on Type-2 isomorphism.
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Theorem 3.7. [16] For n ≥ 2, k ≥ 3, 1 ≤ 2s−1 ≤ 2n−1,
n , 2s−1, R = {2s−1,4n−2s+1,2p1,2p2, . . . ,2pk−2} and
S = {2n − (2s − 1), 2n + 2s − 1,2p1,2p2, . . . ,2pk−2}, cir-
culant graphs C8n(R) and C8n(S) are Type-2 isomorphic
(and without CI − property) where gcd(p1,p2, . . . ,pk−2)
= 1 and n,s,p1,p2, . . . ,pk−2 ∈N. �

Theorem 3.8. [16] For R = {2r −1,2s−1,2p1,2p2, . . . ,
2pk−2}, n ≥ 2, k ≥ 3, 1 ≤ t ≤ [n2 ], 1 ≤ 2r −1 < 2s−1 ≤ [n2 ],
gcd(p1,p2, . . . ,pk−2) = 1 and n,r, s, t,p1,p2, . . . ,pk−2 ∈N,
if Θn,2,t(Cn(R)) and Cn(R) are Type-2 isomorphic circu-
lant graphs for some t, then n ≡ 0 (mod 8), 2r −1+2s−1
= n

2 , t =
n
8 or 3n

8 , 2r −1 , n
8 , 1 ≤ 2r −1 ≤ n

4 and n ≥ 16. �

Definition 3.9. [1] Let Adn = {Φn,x : x ∈ Φn},
Adn(R) = {Φn,x(R) : x ∈ Φn} = {xR : x ∈ Φn} and
Adn(Cn(R)) = T1n(Cn(R)) = {Φn,x(Cn(R)) : x ∈ Φn} =
{Cn(xR) : x ∈ Φn} for a set R = {r1, r2, . . . , rk , n − rk , n −
rk−1, . . . ,n − r1} ⊆ Zn. Define ′◦′ in Adn(Cn(R)) such that
Φn,x(Cn(R)) ◦ Φn,y(Cn(R)) = Φn,xy(Cn(R)) and Cn(xR)
◦ Cn(yR) = Cn((xy)R) for every x,y ∈ Φn, under arith-
metic modulo n. Clearly, Adn(Cn(R)) is the set of all cir-
culant graphs that are Adam’s isomorphic to Cn(R) and
(Adn(Cn(R)),◦) = (T1n(Cn(R)), ◦) is an abelian group
and we call it as the Adam’s group or Type-1 group on
Cn(R) under

′◦′ .

Definition 3.10. [1] Let V (Cn(R)) = {v0, v1, . . . , vn−1},
V (Kn) = {u0, u1, . . . , un−1}, r ∈ R, m,q, t, t′ ,x ∈ Zn

such that gcd(n,r) = m > 1, x = j + qm, 0 ≤ j ≤
m − 1 and 0 ≤ q, t, t′ ≤ n

m − 1. Define Θn,r,t : Zn →

Zn and Θn,r,t : V (Cn(R)) → V (Kn) such that Θn,r,t(x)
= x + jtm, Θn,r,t(vx) = ux+jtm and Θn,r,t((vx, vx+s)) =
(Θn,r,t(vx),Θn,r,t(vx+s)) for every x ∈Zn and s ∈ R, under
subscript arithmetic modulo n. Let s ∈Zn, Vn,r = {Θn,r,t :
t = 0,1, . . . , nm − 1}, Vn,r (s) = {Θn,r,t(s) : t = 0,1, . . . , nm − 1}
and Vn,r (Cn(R)) = {Θn,r,t(Cn(R)) : t = 0,1, . . . , nm − 1}.
Define ′◦′ in Vn,r such that Θn,r,t ◦ Θn,r,t′ = Θn,r,t+t′ ,
(Θn,r,t ◦ Θn,r,t′ )(x) (= Θn,r,t(Θn,r,t′ (x)) = Θn,r,t(x + jt′m)
= (x + jt′m) + jtm = x + j(t + t′)m) = Θn,r,t+t′ (x) and
Θn,r,t(Cn(R)) ◦ Θn,r,t′ (Cn(R)) =Θn,r,t+t′ (Cn(R)) for every
Θn,r,t ,Θn,r,t′ ∈ Vn,r where t + t′ is calculated under addi-
tion modulo n

m . Clearly, (Vn,r (s), ◦) and (Vn,r (Cn(R)), ◦)
are abelian groups for every s ∈Zn.

Vn,r (Cn(R)) contains all isomorphic circulant
graphs of Type-2 of Cn(R) w.r.t. r, if exist. Let
T2n,r (Cn(R)) = {Cn(R)} ∪ {Cn(S) : Cn(S) is Type-2 iso-
morphic to Cn(R) w.r.t. r}. Thus, T2n,r (Cn(R)) =
{Cn(R)} ∪ {Θn,r,t( Cn(R)) : Θn,r,t(Cn(R)) = Cn(S) and
Cn(S) is Type-2 isomorphic to Cn(R) w.r.t. r, 0 ≤ t ≤
n
m − 1} = {Θn,r,0(Cn(R))} ∪ {Θn,r,t(Cn(R)) : Θn,r,t(Cn(R))
= Cn(S) and Cn(S) is Type-2 isomorphic to Cn(R),
0 ≤ t ≤ n

m − 1} ⊆ Vn,r (Cn(R)) and (T2n,r (Cn(R)), ◦) is
a subgroup of (Vn,r (Cn(R)), ◦). Clearly, T1n(Cn(R)) ∩
T2n,r (Cn(R)) = {Cn(R)}. And Cn(R) has Type-2 isomor-
phic circulant graph w.r.t. r if and only if T2n,r (Cn(R))
, {Cn(R)} if and only if T2n,r (Cn(R)) ∩ {Cn(R)} , Φ if
and only if |T2n,r (Cn(R))| > 1 [1].

Definition 3.11. [1] For any circulant graph Cn(R), if
T2n,r (Cn(R)) , {Cn(R)}, then (T2n,r (Cn(R)), ◦) is called
the Type-2 group of Cn(R) w.r.t. r under ‘ ◦′ .

Theorem 3.12. [1] Let p be an odd prime and k ≥ 3.
Then, for i = 1 to p, di = (i − 1)np + 1 and Ri = {di ,
np2 − di ,np

2 + di ,2np
2 − di ,2np

2 + di ,3np
2 − di , 3np

2 +
di , . . . , (p−1)np

2−di , (p−1)np
2+di ,np

3−di ,pp1,pp2, . . . ,
ppk−2, p(np

3 − pk−2), p(np
3 − pk−3), . . . , p(np

3 − p1)},
circulant graphs Cnp3(Ri ) are Type-2 isomorphic (and
without CI-property) where gcd(p1,p2, . . . ,pk−2) = 1 and
n,p1,p2, . . . ,pk−2 ∈N. �

Theorem 3.13. [1] Let p be an odd prime, k ≥ 3,
1 ≤ i ≤ p, di = (i − 1)np + 1, Ri = {di , np2 − di ,
np2 + di , 2np2 − di , 2np2 + di , 3np

2 − di , 3np2 + di ,
. . . , (p − 1)np2 − di , (p − 1)np

2 + di , np
3 − di , pp1, pp2,

. . . , ppk−2, p(np
3 − pk−2), p(np

3 − pk−3), . . . , p(np
3 − p1)},

T2(Ri ) = {Θnp3,p,jn(Ri ) : j = 1,2, . . . ,p}, T2(Cnp3(Ri )) =
{Θnp3,p,jn(Cnp3(Ri )) : j = 1,2, . . . ,p}, gcd(p1,p2, . . . ,pk−2)
= 1 and n,p1,p2, . . . ,pk−2 ∈ N. Then T2np3,p(Ri )
= T2(Rj ), T2np3,p(Cnp3(Ri )) = T2(Cnp3(Rj )) and
(Vnp3,p(Ri ), ◦), (Vnp3,p(Cnp3 (Ri )), ◦) and (T2np3,p(Ri ), ◦)
are abelian groups, 1 ≤ i, j ≤ p. Moreover, (T2np3,p(Cnp3(
Ri )), ◦) is the Type-2 group of order p on Cnp3(Ri ) w.r.t.
r = p, 1 ≤ i, j ≤ p. �

Circulant graphs C16(1,2,7) and C16(2,3,5) are
Type-2 isomorphic and C27(1,3,8,10), C27(3,4,5,13)
and C27(2,3,7,11) are also. See Figures 1–5.

4 Cartesian Product and Factoriza-

tion of Circulant Graphs

Just as integers can be factored into prime num-
bers, there are many results on decompositions of
structures throughout mathematics [6]. The standard
products - Cartesian, lexicographic, tensor, and strong
- all belong to a class of products introduced by Im-
rich and Izbicki and called B − products [8]. In this
section, a few important results that are obtained in
our study of Cartesian product and factorization of
circulant graphs, similar to the theory of product and
factorization of natural numbers, are presented (For
details see [15]). Graphs C5�C6 and C30(5,6) are iso-
morphic and are given in Figures 12 and 13. One can
see the difficulty of this study from this example.

Definition 4.1. [9] The cross product or Cartesian
product of two simple graphs G(V ,E) and H(W,F) is the
simple graph G � H with vertex set V × W in which
two vertices u = (u1,u2) and v = (v1, v2) are adjacent if
and only if either u1 = v1 and u2v2 ∈ F or u2 = v2 and
u1v1 ∈ E.

Theorem 4.2. [15] Let G be a connected graph of order
n, n > 2. Then, P2 � G is circulant if and only if G � H
or P2 � H where H is a connected circulant graph of odd
order. �

Theorem 4.3. [15] Let G be a connected graph of or-
der n ≥ 2. Then C4�G is circulant if and only if G is
circulant of odd order. �

Theorem 4.4. [15] If G and H are connected graphs
and G � H is circulant, then G and H are circulants. �
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Graphs P2�C3 and P2�C4 are given in Figures 10
and 11 and C5�C6 and C30(5,6) � C5�C6 in 12 and
13, respectively.

Theorem 4.5. [15] Let G and H be connected graphs,
each of order > 2. Then G � H is circulant if and only
if G and H are circulants and satisfy one of the following
conditions:

(i) G � Cm(R); H � Cn(S) and gcd(m,n) = 1.

(ii) G � C2m+1(R); H � C2n+1(S), P2 � C2n+1(S), C4 �

C2n+1(S) orC2k (2n+1)(S) and gcd(2m+1,2k(2n+1))
= 1, k ∈N.

(iii) G � P2 � C2m+1(R);H � C2n+1(S) or P2 � C2n+1(S)
and gcd(2m+1,2n+1) = 1.

(iv) G � C2k (2m+1)(R) , P2 � C2k−1(2m+1)(T ) for any

C2k−1(2m+1)(T ); H � C2n+1(S) and gcd(2k(2m +
1),2n+1) = 1, k ∈N.

(v) G � C4 � C2m+1(R); H � C2n+1(S) and gcd(2m +
1,2n+1) = 1.

(vi) G � C2k (2m+1)(R) , C4 � C2k−2(2m+1(T ), P2
� C2k−1(2m+1)(U ) for any C2k−2(2m+1(T ) and

C2k−1(2m+1)(U ); H � C2n+1(S) and gcd(2k(2m +
1),2n+1) = 1, k ∈N, k ≥ 2. �

Definition 4.6. [15] A non-trivial graph G is said to
be prime if G = G1�G2 implies G1 or G2 is trivial; G is
composite if it is not prime.

Definition 4.7. [15] If Cm(R), Cn(S) and Cmn(T ) are
circulant graphs such that Cm(R) � Cn(S) � Cmn(T ), then
we say that Cm(R) and Cn(S) are divisors or factors of
Cmn(T ).

Thus for any connected circulant graph, the graph
and C1( ) = K1 are always divisors and so we call them
as improper divisors of the circulant graph. Divisors
which are integer multiple of improper divisors also
be called as improper divisors of the circulant graph.
This doesn’t arise since we consider divisors of con-
nected graphs only. Divisor(s) other than improper di-
visors is called proper divisor(s) of the circulant graph.

Definition 4.8. [15] A circulant graph whose only di-
visors are improper is called a prime circulant graph.
Other circulant graphs are called composite circulant
graphs.

Theorem 4.9. [15] [Factorization TheoremOn Circu-
lant Graphs]
Let m and n be relatively prime integers. If R ⊆ [1, m2 ], S
⊆ [1, n2 ] and T ⊆ [1, mn

2 ] with T = dnR ∪ dmS for some d
such that gcd(mn,d) = 1, then Cmn(T ) � Cm(R) � Cn(S).
�

Theorem 4.10. [15] If n , 4 and 1 ∈ R, then Cn(R) is
a prime circulant. �

Corollary 4.11. [15] If n , 4 and R contains an integer
relatively prime to n, then Cn(R) is prime circulant. �

Corollary 4.12. [15] If n is a prime power other than
4 and Cn(R) is connected, then Cn(R) is prime circulant
for all R , φ. �

Theorem 4.13. [15] [Fundamental Theorem of Circu-
lant Graphs]
Every connected circulant graph is the unique product of
prime circulant graphs (uniqueness up to isomorphism).
�

Remark 4.14. [13, 15] If G is a connected graph such
that G � G1 � G2 � . . . � Gk , then the diameter of G,

dia(G) =
∑k

i=1 dia(Gi ).
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Thus, we can find the diameter of any given circu-
lant graph, provided diameters of its prime circulant
graphs are known. Also the above relation helps to
generate (circulant) graphs of bigger diameters.

Remark 4.15. [15]

1. In prime factorization of connected circulants C1( )
= K1 and C2 = P2 act similar to 1 and 2 among the
set of all natural numbers, respectively. Thus, C1( )
is a unit, like 1 in number theory.

2. There exist two types of prime circulant graphs of
order n, one with periodic cycle(s) of length n and
the other without periodic cycle of length n.

3. The theory of factorization of circulants is similar
to the theory of factorization of natural numbers
and one of the very few well-known mathematical
structures so vividly classified (expressed) in terms
of prime factors. It can be applied in cryptography.

4. We developed VB programs POLY215.exe and
POLY315.exe to show visually how the transforma-
tions Θn,r,t and Φm,n act on Cn and Cm � Cn, re-
spectively for different values of m and n, m,n ∈N.

5. An interesting problem is, for a given integer n,
finding the number of prime (composite) circulant
graphs of order either equal to n or less than or
equal to n.

6. One can develop theories similar to the theory of
Cartesian product and factorization of circulant
graphs to the other standard products of circulant
graphs.

Conclusion This study covers a few isomorphic
properties of circulant graphs. One can go for a simi-
lar study on Cayley graphs.
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