

Available online at www.sciencedirect.com

ScienceDirect

Electronic Notes in DISCRETE MATHEMATICS

Electronic Notes in Discrete Mathematics 53 (2016) 25-41

www.elsevier.com/locate/endm

Constructions of 1-Uniform dcsl graphs using Well-graded families of sets

Nageswara Rao K , Shaini P ^{1,2}

Department of Mathematics Central University of Kerala Kasaragod, India

Germina K A³

Mathematics Research Center, Mary Matha Arts & Science College
Kannur University
Mananthavady, India

Abstract

A 1-uniform dcsl of a graph G is an injective set assignment function $f:V(G)\to 2^X$, X be a non-empty set, such that the corresponding induced function $f^{\oplus}:V(G)\times V(G)\to 2^X\setminus\{\phi\}$ given by $f^{\oplus}(uv)=f(u)\oplus f(v)$ satisfies $|f^{\oplus}(u,v)|=1.d(u,v)$ for all distinct $u,v\in V(G)$, where d(u,v) is the length of a shortest path between u and v, and $f(u)\oplus f(v)$ denotes the symmetric difference of the two sets. Let $\mathcal F$ be a family of subsets of a set X. A tight path between two distinct sets P and Q (or from P to Q) in $\mathcal F$ is a sequence $P_0=P,P_1,P_2\dots P_n=Q$ in $\mathcal F$ such that $d(P,Q)=|P\triangle Q|=n$ and $d(P_i,P_{i+1})=1$ for $0\leq i\leq n-1$. The family $\mathcal F$ is well-graded (or wg-family), if there is a tight path between any two of its distinct sets. Any family $\mathcal F$ of subsets of X defines a graph $G_{\mathcal F}=(\mathcal F,E_{\mathcal F})$, where $E_{\mathcal F}=\{\{P,Q\}\subseteq \mathcal F:|P\triangle Q|=1\}$, and we call $G_{\mathcal F}$, an $\mathcal F$ -induced graph. The purpose of this paper is to examine the existence of 1-uniform dcsl of an induced graph $G_{\mathcal F_1\cup\mathcal F_2\cup\ldots\mathcal F_n}$ formed from the finite union of well-graded families $\mathcal F_1,\mathcal F_2,\ldots$, and $\mathcal F_n$ by introducing amalgamation techniques in