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A DERIVATION OF TWO QUADRATIC

TRANSFORMATIONS CONTIGUOUS TO THAT OF

KUMMER VIA A DIFFERENTIAL EQUATION

APPROACH

K. Shani, Junesang Choi∗ and Arjun K. Rathie

Abstract. The purpose of this note is to provide an alternative
proof of two quadratic transformations contiguous to that of Kum-
mer using a differential equation approach.

1. Introduction

Throughout this paper, let C, Z, and N be the sets of complex num-
bers, integers, and positive integers, respectively, Z

−

0
:= Z \ N and

N0 := N ∪ {0}. The quadratic transformation for the Gauss hyper-
geometric function 2F1(a, b; c;x) which will be considered here and was
originally obtained by Kummer [4] is given as follows:

(1) (1− x)−a
2F1

[

a, b ;
2b ;

−2x

1− x

]

= 2F1

[

a

2
, a

2
+ 1

2
;

b+ 1

2
;
x2

]

(

|x| < 1,

∣

∣

∣

∣

−2x

1− x

∣

∣

∣

∣

< 1, 2b ∈ C \ Z−

0

)

.

Kim [2] re-derived this result (1) by using the following known hy-
pergeometric identities:

2F1

[

−2n, α ;
2α ;

2

]

=
(1
2
)n

(α+ 1

2
)n

(n ∈ N0)

2F1

[

−2n− 1, α ;
2α ;

2

]

= 0 (n ∈ N0).
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Luke [4] established the transformation (1) by using the differential equa-
tion satisfied by 2F1.

Kim et al. [3] presented two transformation formulas contiguous to
(1) which are recalled in the following theorem.

Theorem 1.1. The following transformation formulas hold true:

(2)

(1− x)−a
2F1

[

a, b ;
2b+ 1 ;

−2x

1− x

]

= 2F1

[

a

2
, a

2
+ 1

2
;

b+ 1

2
;
x2

]

+
ax

2b+ 1
2F1

[

a

2
+ 1

2
, a

2
+ 1 ;

b+ 3

2
;
x2

]

and

(3)

(1− x)−a
2F1

[

a, b ;
2b− 1 ;

−2x

1− x

]

= 2F1

[

a

2
, a

2
+ 1

2
;

b− 1

2
;
x2

]

−
ax

2b− 1
2F1

[

a

2
+ 1

2
, a

2
+ 1 ;

b+ 1

2
;
x2

]

(

|x| < 1,

∣

∣

∣

∣

−2x

1− x

∣

∣

∣

∣

< 1, 2b± 1 ∈ C \ Z−

0

)

.

Here we give an alternative proof of the quadratic transformations
(2) and (3) by adopting the differential equation approach used by Luke
[4]. It is worth remarking that these transformations cannot be com-
pletely derived by the hypergeometric differential equation, but that a
related second-order differential equation has to be solved by the stan-
dard Frobenius method.

Before we give our alternative derivation of (2) and (3) in Section 3,
we first give an outline of the arguments used by Luke [4] to establish
the Kummer transformation (1).

2. Derivation of (1) by Luke

It is well known that the hypergeometric function 2F1(a, b; c; z) sat-
isfies the following differential equation (see, e.g., [1, p. 75]; see also [5,
Entry (15.10.1)]):

(4) z(1− z)
d2w

dz2
+ [c− (a+ b+ 1)z]

dw

dz
− abw = 0.
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If we put c = 2b and make the change of variable z = −2x/(1−x), then
Eq. (4) becomes

x (1+x) (1−x)2
d2w

dx2
+2

dw

dx

[

x3 − x2(a+ 1) + x(a− b) + b
]

+2abw = 0.

If we set w = (1− x)ay, after a little simplification, we find

(5) x (1− x2)
d2y

dx2
− 2

dy

dx
[x2(a+ 1)− b] − a(a+ 1)xy = 0,

one of whose solutions is

(6) y = (1− x)−a
2F1

[

a, b ;
2b ;

−2x

1− x

]

.

The differential equation (5) is invariant under change of variable x to
−x. Hence if we introduce the new independent variable ν = x2 the
equation describing y becomes

(7) ν (1− ν)
d2y

dν2
+

[

b+
1

2
− ν

(

a+
3

2

)]

dy

dν
−

(

a2

4
+

a

4

)

y = 0.

We observe that (5) is of the form as the hypergeometric differential
equation (4) which therefore has in |ν| < 1 the general solution
(8)

y = A 2F1

[

a

2
, a
2
+ 1

2
;

b+ 1

2
;
ν

]

+B ν
1

2
−b

2F1

[

a

2
− b+ 1

2
, a

2
− b+ 1 ;

3

2
− b ;

ν

]

.

We observe that the differential equation (5) has the solution (6) valid
in |−2x/1− x| < 1 and if 2b is neither zero nor a negative integer. At
the same time, the equation (5) has the solution (8) with ν = x2 valid
in |x| < 1. Therefore subject to these conditions there exist constants
A and B such that
(9)

(1− x)−a
2F1

[

a, b ;
2b ;

−2x

1− x

]

= A 2F1

[

a

2
, a
2
+ 1

2
;

b+ 1

2
;
x2

]

+B x1−2b
2F1

[

a

2
− b+ 1

2
, a

2
− b+ 1 ;

3

2
− b ;

x2
]

.

The left-hand side and the first member on the right-hand side of (9)
are both analytic at x = 0, but the remaining term is not, due to the
presence of the factor x1−2b. Hence B=0 and by considering the terms
at x = 0 it is easily seen that A=1. This leads to the required quadratic
transformation given in (1).
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3. An alternative derivation of Theorem 1.1

In order to establish the result (2), setting c = 2b + 1 in (4) and
changing the variable z = −2x/(1− x), we obtain
(10)

x(1+x)(1−x)2
d2w

dx2
+

dw

dx
(1−x)[x(2a− 1)− 2x2+(2b+1)]+2abw = 0,

which has a solution w = 2F1 (a, b; 2b+ 1;−2x/(1− x)). With a further
change of the variable variable w = (1− x)ay, after some simplification,
we find

(11) x(1−x2)
d2y

dx2
−

dy

dx
[x2(2a+2)+x− (2b+1)]−ay[x(a+1)+1] = 0.

A solution of (11) is consequently

y = (1− x)−a
2F1

[

a, b ;
2b+ 1 ;

−2x

1− x

]

.

The differential equation (11) is not invariant under the change of vari-
able x to −x and so we cannot reduce it to the hypergeometric equation
(4). Inspection of (11) shows that the point x = 0 is a regular singular
point. Accordingly, we seek two linearly independent solutions of (11)
by the Frobenius method. So let

(12) y = xλ
∞
∑

n=0

cnx
n (c0 6= 0),

where λ is the indicial exponent. Substitution of this form for y in (11)
then, after a little simplification, leads to
(13)

∞
∑

n=0

cnx
n−1(n+ λ)(n+ λ+ 2b)

=
∞
∑

n=0

cnx
n+1

[

(n+ λ)(n+ λ− 1) + (n+ λ)(2a+ 2) + a2 + a
]

+

∞
∑

n=0

cnx
n(n+ λ+ a).

The coefficient of x−1 in (13) must vanish to yield the indicial equation:

λ(λ+ 2b) = 0.
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So we have λ = 0 and λ = −2b. Equating the coefficient of xn (n ∈ N0)
in (13), we obtain

c1 =
(λ+ a)

(λ+ 1)(2b+ λ+ 1)
c0

and
(14)

cn =
[(n− 2 + λ)(n+ λ+ 2a− 1) + a(a+ 1)] cn−2 + (n+ λ+ a− 1) cn−1

(n+ λ)(n+ λ+ 2b)

for n ∈ N \ {1}. With the choice λ = 0, we have

c1 =
a

2b+ 1
c0

and

cn =
[(n− 2)(n+ 2a− 1) + a(a+ 1)]cn−2 + (n+ a− 1)cn−1

n(n+ 2b)
(n ∈ N \ {1}).

Solution of this three-term recurrence with the help of Mathematica
generates the values given by

c2n =
(a
2
)n(

a

2
+ 1

2
)n

n!(b+ 1

2
)n

c0

and

c2n+1 =
(a
2
+ 1

2
)n(

a

2
+ 1)n

n!(b+ 3

2
)n

c1,

the general values of which can be established by induction. Substitution
in (12) is easily seen to give one solution of (10) as follows:

y1 = 2F1

[

a

2
, a

2
+ 1

2
;

b+ 1

2
;
x2

]

+
ax

2b+ 1
2F1

[

a

2
+ 1

2
, a

2
+ 1 ;

b+ 3

2
;
x2

]

when | x |< 1.

A second solution is obtained by taking λ = −2b in (14) to yield

c1 = c0
a− 2b

1− 2b

and

cn =
[(n− 2− 2b)(n− 2b+ 2a− 1) + a(a+ 1)] cn−2 + (n− 2b+ a− 1) cn−1

(n− 2b)n

for n ∈ N \ {1}. This generates the values

c2n =
(a− 2b)n(a− 2b+ 1)n

n!(1
2
− b)n

c0
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and

c2n+1 =
(a− 2b+ 1)n(a− 2b+ 2)n

(3
2
− b)nn!

c1.

A second solution of (11) is therefore given by

y2 = c0 x
−2b

(

2F1

[

a− 2b, a− 2b+ 1 ;
1

2
− b ;

x2
]

+
(a− 2b)x

1− 2b
2F1

[

a− 2b+ 1, a− 2b+ 2 ;
3

2
− b ;

x2
]

)

when | x |< 1.

It then follows, when | x |< 1 and | −2x

1−x
|< 1 and provided 2b + 1 is

neither zero nor a negative integer, that there exist constants A and B
such that

(15) (1− x)−a
2F1

[

a, b ;
2b+ 1 ;

−2x

1− x

]

= Ay1 +By2.

Here we observe that the left-hand side of (15) and the solution y1 are
both analytic at x = 0, whereas the solution y2 is not analytic at x = 0
due to the presence of the factor x−2b. Hence B=0 and, by putting x = 0
in (15), it is easy to find A = 1. This completes the proof of the result
(2).

A similar procedure as in the proof of (2) can be employed to establish
the quadratic transformation in (3). So its detailed account of proof is
omitted to be left to the interested reader.
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