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ON BASIC ANALOGUE OF CLASSICAL SUMMATION
THEOREMS DUE TO ANDREWS

HAaRrRsH VARDHAN HARSH, ARJUN K. RATHIE AND SUNIL DUTT
PuroHIT*

Abstract. In 1972, Andrews derived the basic analogue of Gauss’s
second summation theorem and Bailey’s theorem by implementing
basic analogue of Kummer’s theorem into identity due to Jackson.
Recently Lavoie et.al. derived many results closely related to Kum-
mer’s theorem, Gauss’s second summation theorem and Bailey’s
theorem and also Rakha et. al. derive the basic analogues of re-
sults closely related Kummer’s theorem. The aim of this paper is
to derive basic analogues of results closely related Gauss’s second
summation theorem and Bailey’s theorem. Some applications and
limiting cases are also considered.

1. Introduction

The g-analog of Gauss’s hypergeometric function is given by ([6]):
ab = (339),(b59), 2
(1) 2¢1[ c 7(172’]—20:.,!,

1: n=0
@) <“’q>"‘{ (1-a)(1 —ag) - (1 - ag"); n#0,
The g-analog of generalized hypergeometric function defined as fol-
lows (see [5]):
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Bailey [2] and Daum [3] independently discovered the following summa-
tion formula:

2
" ; [ a, b, , (045 %) oo (— € @ o (%; qZ)OO

4 201 | aq ¢,y | = ;

5 (F:9) o0 (= 10) o

which is g-analog of Kummer’s theorem for Gauss’s hypergeometric func-
tion.

In 1973, Andrews [1] also derived the summation formula (4) by follow-
ing a different method. In the same paper, he also derives the following
summation formulas:

5) 16 a, b, | L 8 9a0(a66%) o (ba:67) o
2 \% qab’ - \/ﬁ7 4 (qab7 q2)oo

and

) a4, ) (ab; ¢%)o (%b qQ)OO

( ) 2¢2 |: b, —q, y 4, — :| - (b, q)oo ’

which are g-analogues of Gauss’s second summation theorem and Bai-
ley’s theorem. Andrews derive these formulas with the help of Jackson’s
identity [4] given below:

. C
(7) 202 [ Cit’abz’, $q, 72 } = ((C;(Iq))cizﬁ [ a’C’b’ 14,2 } .

In the theory of Gauss’s hypergeometric function, Lavoie et.al. [7-9]
derived many results closely related Kummer’s theorem, Gauss’s second
summation theorem and Bailey’s theorem. Recently Rakha et.al. [10]
derived the following g-analogues of results closely related to Kummer’s
theorem:

(8) g T T () ().

x4 (a:0%) o (107 . — (0q: ) oo (1 6%) 1

a,b b(—g;
2(;51 Zqua . q (=99
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a, bq?, b2
201 [ agq 3%_% :| = ( I
b bq

9) (ag;¢%) o (b%;qQ)oo{q<1 ) (1
~(056) oo (3:6) o {a (1~ ) + (1 - %)} ’

a,bg®,
201 [ ag ;q,*% ]
b

(10) = e
a3(1—b)(1—bg) (1—bg? (bvq)oo( a)

X {(a;q2)o@(%;q2)m X1 —(ag; ¢*) o (bfz,q )OoYl} :

where
Xl - q2 (]- - b2aq4> {q (1 b2a2 + (]‘ b%)
+(1=3%) {a(1- %) + (1 - ag)
and
2 a __a _ _a _
Vi=@(1-8) (1- ) {a(1- %)+ (1-a)
+(1—ﬁ) (1—a){q(1—ﬁ +(1- %)
b
a, o (=4;9)
q _9q — oo
(11) 2¢1[ ag DT ] (F59) o (= F:9)
a 2 a 3
X {(aq7q2)oo (%;qQ)OO + (a3 ¢%) oo (%,CF Oo} :
b
a, —3, q (=49
q 41 — fe's]
Sl A | = et
(12) (ag; ¢*)oo (L%Zl&z) {(1 - %) + (lq“)}
X o0 s
+1(1+ )0 (1)
b
a, -3, q (—q;9)
q . 4 — ___\ ttloo
a3 | et = e
a 4 a 5
X [(aq, q2)m<%;q2)me + (a:¢%) 5 b%,q2>ooY3] ,
where
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and
3 3
aq 1 aq (1 —aq)
Ys = - (1 1— i S
=g (1-55) + 5 { (-5 - B
e, b (=as0)
201 |: aq?® 34, — :| = - e
(14) b P -9 () (-
aq? ag’
X {(aq; qz)w(%;qz)w — Ha;:¢%) oo (9Fsq )oo}
a,b (a9
2¢1 |: ag3 54, -1 :| = ; =
“+ Pl (-5) - () ()
aq? aa®
(15) (ag; ¢*)so (b%;qQ) — (14 q)(q; q2)oo< 4 ;q2>
X 3 a 4 e 9
+L& (1 —a)(ag; ¢*)oo | G55 ¢° N
a,b, _ —4;9) oo
(16) 201 [ g, 7% ] (5:0) o (—3:0)
< { (00 (30 oo + @) (§:07) . |
and
(17)
a, b, (—q:0)
201 [ a ;q’_g :| = 7. 700
bq’ b (E;q)w(_é;q>
. (1 - ﬁ) (a4; 4*)oo (333 0%) o + g (140) (@16 ﬁ;f)

b
+ﬁ(§;qg)m(b%;q2)oo

The main objective of this paper is to derive the g-analogues of re-
sults closely related to Gauss’s second summation theorem and Bailey’s
theorem. Applications and special cases are also derived.

2. Main results

In this section, firstly we derive the following results, which are basic
analogues of results closely related to the Gauss’s second summation
theorem:
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b e
2y | igi—q | = e
(18) qvab —qvab (b—a)(q?ab;q?) o
x {b(a; ¢*) o (ba; ¢%) . — alaq; ¢%) oo (b:4%) L}

b ..
202 @ 14, _q2 = #
(19) qvab, — gv/ab, (b—a)(q%ab;q?),
x {(a;¢%) o (ba; %) . — (aq;4*) oo (b:6?) _ }

a, b
2¢2 |: q%ﬁ —q2 4 :| (a— b)(q abq )oo
20 abg( 1+q)(b a
(20) ) { {etatdsat } (b:¢%) ]
-{ &

2(1-a a
b(b(laa)) + (E] } ag; q oo(bq q )

a,b,
2¢)2[ q2\/* q2r §Q7_q3 :|
(21) = a)2(b( ())(q ab)q .
(aq; ¢*)so (bq; (q—b+1—a)
% [ -1 +q)(a,q020)oo(b; @) ] ’

¢ a,b, R | _
202 q2 ab,—q2\/@, 34, —q -

(—4:9) oo

(22) q(g%b—a)(b—a)(b—q%a)(q*ab;q?)

g {(a; ) (bg; ?) Xy~ @00 (0070) Vo } ,
where

X1 =[(¢> = b)(1+q) + (¢ —bs* + 1 — aq)]
and

Y = [(¢* = ) {a(1 = b) + (L — )} + (1 — a)(q — 1)(1 — b))
a,b, L _ (a9

(23) 202 { Vab, —vab, (O] T G

x {(aq; ¢*) o (b:4%)  + (a:6%) oo (ba: ¢*) . }
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(24)
a, b, .
2¢2 ab ab 34, ~1 = .
ab _  [ab q q(sz. 2)00
x {(aq; ¢*) oo (bg; %) (g —b+a— 1)+ (14 q)(a;¢*) o (:¢%) . }

b e
o | NN |- CN
X {(aq; @)oo (b3 4) ( X T bq’qg)ooy;},
where
Xy = {(1—2) + (1qa)}+;3(1+q)(1—a)
and

Next, we derive the following basic analogues of the results closely
related to the Bailey’s theorem:

2@52[ a’§’ g, -t | = 1
(26) b, —q, ¢ (1-2)(ts0) o

A (:0?) (3;612)00—%(%San)w(%;q?)w},

3

2@[ b, 7q’_q2}_ 1_%)(11_2)“”1)00

00 [ () () s a (i) ()
B ) (el S

(28) 2@[ b g, ’q’_bq} T7a) (5)
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and

(29)

a, aiq’ . 2 _ a2q
202 | Y TN S T e G,
y { (1-2) (abq2?q2)m(%;q2>m + 2L+ a)(abg; ) (5 6%) }

1 C 2 bg. 2
i (abig?)  (%i0)
3. Derivations of the main results

In order to prove the result (18), we denote the left hand side of (18)
as ¢, then

a, b o
¢—2¢2[ q\/@ _q\/@ -Qa_Q}

_y (a;9),, (b3 9),, -
nZ:O (©9), (CJ\/CE; q)n<_q\/@; q>n
- i (a;9),,(b;9),, alb—a)

n=0 (¢ 9),, (q\/@; q)ﬂ(—q\/%; q)n (b—a)
_ 5 (a:9),(b;9),
(b=a) = (q;Q)n(q ab;q) (—q\/@;q)n

n

2" (b—a+ abq" — abq")

_ 1 = (a;9),,(b59),, n b(1—aq™) ‘
(b—a) nZ:;) (¢; q)n(q\/%; q n(—q\/%; q)n { —a(l—bg") }
Hence
¢ — b G (a; q)n (1 B aqn) (b7 q)n n

z

(b= = (459, (av/abs q)n (—avabia) n

o < (a59),,(b59),, (1 = bg™)
(b=a) 7= (¢:9),, (qx/c%; q) § (—qx/%; q)n

n
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On using the known result, namely

(@n (1 = aq") = ()ns1 = (1 = a) (aq)n,

we can write

PGy S (ag;9),(b;0),, o
(b—a) = (g q)n(q\/@; q)n(—q\/%; q)n
a(l —b) & (a;9),,(bg; ), n

z.

- (b-a) nz::o (q;q)n(q\/%; q)n(—q\/@; q)n

b= b a & agq, b Lo
(b a) 292 q /ab —q /ab 1 q;—¢q

a(1-0) a, bq e ’
(b—a) 2¢2 [ q /(Ib —q /ab g5 —q :|

which implies that

a, b o
2¢2[ wab —qvab T4 ] =
b(1—a) aq, b o
(30> (b*a) 2¢2 I: q, /ab _q /ab . q7 q :|
a(l b b a, bq C e
202 q /ab —g /ab “4—q |-

Now, the right hand side of (30) can be evaluated with the help of
summation formula (5) by replacing a to aq or b to bg and also by
permitting the use of identity (1 — a)(ag?;¢*)oo = (a;¢?)so, then after
little simplification, we obtain

b »

202 . G- | = G

(31) qvab —qvab (b—a)(¢?abig?) o
X {b(a; ¢%) oo (g3 ¢%) o — alag; %) oo (b54%) L} -

This completes the proof of result (18).
In similar manner, we can easily prove the result (20), so we omit the
details.
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Again, in order to derive (19), we put ¢ = gvab and z = —q\/g in
(6), then after some rearrangement, we get

d) a, b’ . 2 _

202 q\/%’ _q\/%’ 34,4 -

32

( ) ( q\[ﬂ)m gb a q . \/>
(—qVabig), 271 q ab 4

On the other hand, if we replace b = \/% in (2), we obtain

(33)

a5, . _ (=49 o
2‘“[ Vb, q\ﬂ  Va(ve-va)(vaba)., (—/%a)
X {(0;4%) o (b3 ¢%) ., — (a3 ¢%) oo (b: 4°) . } -

On noting

1
\/5(\/5—\/5) <—\/§;q)oo (b—a)<—q z;q);

relation (31) becomes

aq\g, (49 oo
(34) 201 [ qVab, Q\/i} (b—a)(gVab;q) o, ( g;q>
x {(a;¢%) o (ba: %) — (aq; ¢%) oo (b 4?) . } -

Now, on using the above result in the right hand side of (30) and then
after little simplification, we arrive at

oo

e, . 2 | _ (—49) o
2%{ qVab, — qV/ab, P71 }—@axqam}o
x {(a:0%) o (ba; ¢%) . —(ag;¢®) oo (b3¢%) )} -

This completes the proof of (19).
Following the similar manner, we can easily derive the remaining re-

sults. The following table shows how we could get the different results by
substituting different values in Jackson’s theorem and results required.
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S. No. | Derivation of | Values in Jackson’s theorem | Use of the result
3 3
1 (21) c=q2Vab,z = —qﬁ\/g 9)
2 (22) c=q¢*Vabz = —¢? 2 (10)
3 (23) c=+abz = fﬁ (11)
4 (24) c=\/2z=—\/L (12)
5 (25) c=1Vabz=—1,/% (13)
6 (26) c=bb="L and z = —1 (14)
7 (27) c=bb="L and z = —1 (15)
8 (28) c=bb=_and z=—1 (16)
9 (29) c=0bb= aiq and z = —1 (17)

For the shake of brevity we omit the detailed proof.

4. Applications

In this section, we consider some consequences of the main results
derived in the preceding section. To illustrate this, we deduce known
result (14) by using the results (18) and (19). For this, if we put a = A,

b= AB—%?, c= %?2 and z = — % in the Jackson’s identity, we obtain
2
A, A% q (_%?q)
2¢2 Aq? B ,QaB (_E) = A(—4a y
AR :
B /49
X261 WA (—4%)
B
which can be written as
Aq. 2
A, B <—§,Q) A Ar
201 [ Ag? i —F ] =~ 22 A Bay 04
B (—%10) B B

Now on writing the right had side of above equation as I, and on ex-
panding the series involved, we get

I =

_4g. Ag? A
(519 1= @ 0), (4F5a) (—39)

(_%;q>m o0 (4;9),, (%q;;Q)n { 71)nq(2)}1+272(*Q)n

] |
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I=-"-7%
(%), (1+F)
oo (459), %"22;0 (1+ q?l
X ”<

Hence, we obtain

Agq.,
o NP g -l
= (45 (= %39)
A A
X{2¢2 a2 Bap 104
B Ag?
+%a¢o A;%’ Ble 14-¢ }
B B

It is interesting to observe that, on using (18) and (19), and after certain

simplification the above result reduces to (14).

In the same manner, using (20) and (21), we can also derive (15).

5. Special cases

It is interesting to observe that in view of the following limit formulas:

Lim Ty(a) = T()

35
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and

.
Lim (4% @)n = (a)n
g—1- (1 —¢q)"
the main results (18) and (19) provides, the g-extensions of the following
result:
,b
(a+b+2

1 _ 1
F(3a)0(30+3) F(éa+%)r(éb)}'
Again, if we take limit ¢ — 1~ of results (20) and (21), we obtain the
following;:

on| 4 SRR ORI CTRRTER)
(35) 2
X

b :
(a+b+3)

{ L(b+a—1) B 9 }
F(za+3)T(50+3)  T(Ge)r(zb—3) -

Finally, it is interesting to note that, the results (18) and (19) are
g-analogues of the same result (35), and (20) and (21) are g-analogues
of the result (36). Moreover, our results shows that, it is possible that
any hypergeometric identity bears more than one basic analogue.

NO|—=

o5 | [= 0o

o=

(36)

X
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