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Abstract

Recently the authors have established the following identities:
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by employing two new summation formulas presented recently by Qureshi

et al. For b = a, these identities reduce to the well known results due

to Bailey. The objective of this note is to provide an elementary proof

of these two identities.
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1 Introduction and Preliminaries

Throughout this paper, let C, R+ and R−, Z and N be the sets of complex
numbers, positive and negative real numbers, integers and positive integers,
respectively, and

N0 := N ∪ {0} and Z
−

0 := Z \ N.

It is noted that the classical summation theorems for the hypergeometric
series 2F1 such as those of Gauss and Gauss second, Kummer, and Bailey;
Watson’s, Dixon’s, Whipple’s and Saalschütz’s summation theorems for the
series 3F2 and others play important roles in theory and application (see [5]).

Bailey [2] presented a large number of known, new and useful identities
involving products of generalized hypergeometric series. Qureshi et al. [4]
obtained two interesting summation formulas given in the following theorem.

Theorem 1.1. The following formulas hold true: For n ∈ N0,
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where θ is given by

θ :=















arctan(b/a) (a, b ∈ R+)
π − arctan(b/|a|) (a ∈ R−; b ∈ R+)
arctan(b/a)− π (a, b ∈ R−)
− arctan(|b|/a) (a ∈ R+; b ∈ R−).

(3)
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Using (1) and (2), recently, Choi and Rathie [3] established the following
two results:
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where θ is the same as given in (3).
The special cases of the identities (4) and (5) when b = a are seen to reduce

to following results due to Bailey [2]:
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which were established by mainly using the following classical Kummer’s sum-
mation theorem (see, e.g., [5, p. 68, Eq.(2)] and [6, p. 351, Eq.(3)]):
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(ℜ(b) < 1; 1 + a− b ∈ C \ Z−

0 ).

It is noted that the Gauss’s hypergeometric function 2F1 and its confluent
form known as the confluent hypergeometric function 1F1 are important special
functions and include most of commonly used functions as their special cases,
for example, the Legendre function, the incomplete beta function, the complete
elliptic functions of the first and second kinds, trigonometric functions, the
Bessel functions, parabolic cylinder functions, and Coulomb wave functions.
Here we recall the following two identities (see, e.g., [1, p. 64] and [6, p. 73]):
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Here, in this note, we aim to establish the identities (4) and (5) in a very

elementary way.
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2 Derivations of (4) and (5)

Replacing x by ax in (4) and (5) and making use of (9) and (10) with replaced
x by bx, we obtain
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where θ is the same as given in (3) and which are equivalent to the identities
(4) and (5), respectively. So it suffices to prove (11) and (12). Indeed, we use
Euler’s formula to get

e(a+ib)x = eax eibx

= eax (cos bx+ i sin bx) (i =
√
−1).

(13)

On the other hand, we expand e(a+ib)x as Maclurin series to obtain
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Then (14) can be rewritten as follows:
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We find from (13) and (15) that
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Finally, equating the real and imaginary parts of both sides of (16) is easily
seen to yield the desired results (11) and (12). This completes the proof.

It is noted that the identities (11) and (12) are also recorded in [4].
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