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Abstract 

We aim to provide an alternative proof of two transformation formulas 
contiguous to Kummer’s second transformation for the confluent 

hypergeometric function 11F  using a differential equation approach. 
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1. Introduction and Preliminaries 

We start with the Kummer’s second transformation [2] for the confluent 
hypergeometric function given by 
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which is valid when 2a is neither zero nor negative integer. The 
transformation (1.1) was derived with the aid of the differential equation 
satisfied by 11F  (see, e.g., [6, p. 126]). Bailey [1] re-derived this result by 

employing the Gauss second summation theorem (see, e.g., [5]): 
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and Rathie and Choi [7] obtained the result by using the classical Gauss 
summation theorem (see, e.g., [6]): 
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Rathie and Nagar [8] established two transformation formulas contiguous 
to (1.1) with the help of contiguous forms of Gauss’s second summation 
theorem (see [5]), which are recalled in the following theorem. Throughout 
this paper, let ,C  Z  and N  be the sets of complex numbers, integers and 

positive integers, respectively, and NZZ \:0 =−  and { }.0:0 ∪NN =  

Theorem 1.1. For ,\12 0
−∈± ZCa  the following formulas hold true: 
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and 
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Kim et al. [3] generalized the Kummer’s second theorem (1.1) to give 
explicit expressions of the following forms: 

 ( ).3,2,1,02
;2
;

11 ±±±=⎥⎦
⎤

⎢⎣
⎡

+
− iz

ia
a

Fe z  (1.6) 

Here we are interested in the results for 2±=i  which are given in the 
following theorem: 

Theorem 1.2. For ,\22 0
−∈± ZCa  the following formulas hold true: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

−

+
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

−
=⎥⎦

⎤
⎢⎣
⎡

+
−

4;2
3

;
14;2

3
;

2
;22
; 2

10
2

1011
z

aFa
zz

aFz
a

a
Fe z  

( ) ( ) ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

−

++
+ 4;2

5
;

321

2
10

2 z
aFaa

z  (1.7) 

and 
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Very recently, Kodavanji et al. [2] established the results (1.4) and (1.5) 
by using the involved differential equations. 

The objective of this note is to give an alternative proof of the contiguous 
transformations (1.7) and (1.8) by using the differential equation approach 
(see, e.g., [6, p. 126]). It is worth remarking that these transformations (1.7) 
and (1.8) cannot be derived by using only the hypergeometric differential 
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equation but can be proved by using a related second order differential 
equation with the aid of the standard Frobenius method. 

2. Derivation of (1.1) by Rainville’s Method 

Here we present an outline of the arguments employed by Rainville            
[6, p. 126] who used to establish the Kummer transformation (1.1). 

The confluent hypergeometric function ⎥⎦
⎤

⎢⎣
⎡ x
b
a

F
;
;

11  satisfies the following 

differential equation (see [4, Equation (13.2.1)]): 
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If we put ,2ab =  make the change of variable x into 2z, and let 

,yew z=  then (2.1) becomes 
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one of whose solutions is 
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The differential equation (2.2) is invariant under the change of variable 

from z to .z−  Therefore, if we introduce a new independent variable ,4

2z=σ  

then the equation with the variable y becomes 
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which is the differential equation for the 10 F  function. Two linearly 

independent solutions are given by (see [4, 16.8(ii)]) 
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We then find that, if 2
1+a  is non-integer (that is, if 2a is not an odd 

integer), 
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where A and B are arbitrary constants. Since (2.3) is also a solution of the 
differential equation (2.4), we have 
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The left-hand side and the first member on the right-hand side of the 
expression (2.6) are both analytic at 0=z  while the remaining term is not 

analytic at 0=z  due to the presence of the factor .21 az −  Hence, 0=B  and 
setting 0=z  in the resulting equation is easily seen to give .1=A  When 2a 
is an odd positive integer, the second solution in (2.4) involves a log z term, 
and the same argument shows that 1=A  and .0=B  Hence, this proves the 
transformation (1.1). 

3. An Alternative Derivation of Theorem 1.2 

We first prove the contiguous transformation (1.7). Setting 22 += ab  

in (2.1), changing the variable x into 2z, and letting ,yew z=  we have 
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one of whose solutions is found to be 
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The differential equation (3.1) is not invariant when the variable z is 
changed into .z−  So we cannot reduce the differential equation (3.1) to a 

differential equation for .10 F  Yet an inspection of (3.1) shows that the point 
0=z  is a regular singular point. Accordingly, we seek two linearly 

independent solutions of (3.1) by the Frobenius method. To do this, let 
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where λ is the indicial exponent. Substituting this y in (3.3) for the y in (3.1), 
after a little simplification, we obtain 
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The coefficient of 1−z  in (3.4) is seen to vanish to yield the indicial equation: 
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Solution of this three-term recurrence (3.7), with the help of Mathematica, 
generates the following values: For ,0N∈n  
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whose general values were determined by induction. Replacing nc  in (3.3) 

by the nc  in (3.8) yields one solution of the differential equation (3.1) as 

follows: 
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The 21F  in (3.9) can be split into two 10 F  as follows: 
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Taking a21 −−=λ  in (3.6) yields 
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Using the nc  in (3.11) for the nc  in (3.3), we obtain another solution of 

(3.1) as follows: 
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The 21F  in (3.12) can be split into two 10 F  as follows: 
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A similar argument in Section 2 gives 
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where A and B are constants. It is observed that the left-hand side of (3.14) 
and the 1y  are analytic at 0=z  while the 2y  is not analytic at 0=z  due to 

the presence of the factor .2 laz −−  Therefore, 0=B  and setting 0=z  in the 
resulting equation yields .1=A  When ,2 N∈a  the indicial exponents differ 
by an integer and 2y  involves a term in log z. So we again have 1=A  and 

.0=B  This proves the formula (1.7). 

Similarly as above, we can also prove the formula (1.8). The detailed 
account of its proof is omitted. 
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