# A note on two results involving products of generalized hypergeometric functions



## A NOTE ON TWO RESULTS INVOLVING PRODUCTS OF GENERALIZED HYPERGEOMETRIC FUNCTIONS

ISSN: 0972-0871

Sukanya M.<sup>1</sup>, Junesang Choi<sup>2,\*</sup> and Arjun K. Rathie<sup>1</sup>

<sup>1</sup>Department of Mathematics School of Mathematical and Physical Sciences Central University of Kerala Tejaswini Hills, Periye P.O., Kasaragod, 671316 Kerala State, India e-mail: sukanyam981@gmail.com

akrathie@cukerala.ac.in

<sup>2</sup>Department of Mathematics
Dongguk University
Gyeongju 38066, Republic of Korea
e-mail: junesang@mail.dongguk.ac.kr

#### **Abstract**

The objective of this note is to provide an elementary proof of two very interesting and useful results due to Bailey involving products of generalized hypergeometric functions.

#### 1. Introduction

In the theory of hypergeometric series  ${}_{2}F_{1}$  and generalized

Received: September 6, 2016; Accepted: October 4, 2016

2010 Mathematics Subject Classification: Primary 33B10, 33C20; Secondary 33C05, 33C65.

Keywords and phrases: Gamma function, Pochhammer symbol, generalized hypergeometric

functions, product formulas.

\*Corresponding author

hypergeometric series  ${}_pF_q$ , summation formulas for  ${}_pF_q$  (see, e.g., [2] and [3, Section 1.5]), in particular, the classical summation theorems for the series  ${}_2F_1$ ,  ${}_3F_2$ , and  ${}_4F_3$  play an important role in theory and applications (see, e.g., [2] and [3, p. 350]).

In a very useful, popular and interesting paper [1], Bailey presented a large number of known and unknown formulas involving products of generalized hypergeometric series by using the classical summation theorems for the series  ${}_{2}F_{1}$  and  ${}_{3}F_{2}$ . Among other things, we recall the following two formulas:

$$(1-x)^{-2a} {}_{2}F_{1}\begin{bmatrix} a, a+\frac{1}{2}; \\ & -\frac{x^{2}}{(1-x)^{2}} \end{bmatrix} = \sum_{n=0}^{\infty} 2^{\frac{n}{2}} (2a)_{n} \cos\left(\frac{n\pi}{4}\right) \frac{x^{n}}{n!}$$
 (1.1)

and

$$(1-x)^{-2a} {}_{2}F_{1}\begin{bmatrix} a, a + \frac{1}{2}; \\ & -\frac{x^{2}}{(1-x)^{2}} \end{bmatrix}$$

$$= \sum_{n=0}^{\infty} 2^{\frac{n+1}{2}} (2a)_{n} \sin\left(\frac{(n+1)\pi}{4}\right) \frac{x^{n}}{(n+1)!}, \tag{1.2}$$

where  $(\lambda)_n$  is the Pochhammer symbol defined (for  $\lambda \in \mathbb{C}$ ) by (see [3, p. 2 and p. 5]):

$$(\lambda)_{n} := \begin{cases} 1 & (n = 0) \\ \lambda(\lambda + 1)...(\lambda + n - 1) & (n \in \mathbb{N}) \end{cases}$$
$$= \frac{\Gamma(\lambda + n)}{\Gamma(\lambda)} \quad (\lambda \in \mathbb{C} \setminus \mathbb{Z}_{0}^{-})$$
(1.3)

and  $\Gamma(\lambda)$  is the familiar Gamma function. Here and in what follows,  $\mathbb{C}$ ,  $\mathbb{N}$  and  $\mathbb{Z}_0^-$  denote the sets of complex numbers, positive and non-positive integers, respectively.

Bailey [1] obtained the formulas (1.1) and (1.2) by employing the following classical Kummer's summation theorem (see, e.g., [2, p. 68]):

$${}_{2}F_{1}\begin{bmatrix} a, b; \\ 1+a-b; \end{bmatrix} = \frac{\Gamma\left(1+\frac{1}{2}a\right)\Gamma(1+a-b)}{\Gamma(1+a)\Gamma\left(1+\frac{1}{2}a-b\right)}$$
(1.4)

$$(\Re(b) < 1; 1 + a - b \in \mathbb{C} \setminus \mathbb{Z}_0^-).$$

The objective of this note is to show how the formulas (1.1) and (1.2) can be derived in an elementary way.

### 2. Derivations of (1.1) and (1.2)

We first assume that the involved parameter a and the variable x in (1.1) and (1.2) are real numbers. Let  $\mathcal{L}$  be the right-hand side of (1.1). Then we find that

$$\mathcal{L} = \Re \left[ \sum_{n=0}^{\infty} (2a)_n \frac{\left(\sqrt{2xe^{\frac{i\pi}{4}}}\right)^n}{n!} \right] \qquad (i = \sqrt{-1})$$

$$= \Re \left[ \sum_{n=0}^{\infty} (2a)_n \frac{(x(1+i))^n}{n!} \right]$$

which, in terms of generalized hypergeometric function, can be written as

$$\mathcal{L} = \Re \left( {}_{1}F_{0} \begin{bmatrix} 2a; & \\ & x(1+i) \end{bmatrix} \right). \tag{2.1}$$

Applying the following well known formula:

$${}_{1}F_{0}\begin{bmatrix} a; \\ & z \\ -; \end{bmatrix} = (1-z)^{-a}$$
 (2.2)

to (2.1), we obtain

$$L = \Re([1 - x(1+i)]^{-2a})$$

$$= (1-x)^{-2a} \Re\left[1 - \frac{ix}{1-x}\right]^{-2a}$$

$$= (1-x)^{-2a} \Re\left[{}_{1}F_{0}\begin{bmatrix} 2a; & ix \\ -; & 1-x \end{bmatrix}\right], \qquad (2.3)$$

where (2.2), again, is used for the last equality.

We see that

$${}_{1}F_{0}\begin{bmatrix} 2a; & \frac{ix}{1-x} \\ -; & \frac{ix}{1-x} \end{bmatrix} = \sum_{n=0}^{\infty} \frac{(2a)_{n}}{n!} \left(\frac{ix}{1-x}\right)^{n}$$

$$= \sum_{n=0}^{\infty} \frac{(2a)_{2n}}{(2n)!} (-1)^{n} \left(\frac{x}{1-x}\right)^{2n}$$

$$+ i \sum_{n=0}^{\infty} \frac{(2a)_{2n+1}}{(2n+1)!} (-1)^{n} \left(\frac{x}{1-x}\right)^{2n+1}. \tag{2.4}$$

We find from (2.3) and (2.4) that

$$\mathcal{L} = (1-x)^{-2a} \sum_{n=0}^{\infty} \frac{(2a)_{2n}}{(2n)!} (-1)^n \left(\frac{x}{1-x}\right)^{2n},$$

which, upon using the following elementary identities:

$$(2a)_{2n} = 2^{2n}(a)_n \left(a + \frac{1}{2}\right)_n$$

and

$$(2n)! = 2^{2n} \left(\frac{1}{2}\right)_n n!,$$

becomes

$$\mathcal{L} = (1-x)^{-2a} \sum_{n=0}^{\infty} \frac{(a)_n \left(a + \frac{1}{2}\right)_n (-1)^n}{\left(\frac{1}{2}\right)_n n!} \left(\frac{x}{1-x}\right)^{2n}.$$
 (2.5)

The expression in (2.5) is just the left-hand side of (1.1).

A similar argument will establish (1.2) by taking imaginary part. Its detailed account is omitted.

Next, the formulas (1.1) and (1.2) when the involved parameter a and the variable x are complex numbers are easily seen to hold true by the principle of analytic continuation.

#### References

- [1] W. N. Bailey, Products of generalized hypergeometric series, Proc. London Math. Soc. 28(2) (1928), 242-254.
- [2] E. D. Rainville, Special Functions, Macmillan Company, New York, 1960; Reprinted by Chelsea Publishing Company, Bronx, New York, 1971.
- [3] H. M. Srivastava and J. Choi, Zeta and *q*-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012.