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Abstract 

Elementary proofs of generalizations of two results, due to Bailey, 

involving the product of generalized hypergeometric functions, are 

provided. 

1. Introduction 

Bailey [1] established a large number of very interesting results 

involving the product of generalized hypergeometric functions by employing 
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classical summation theorems such as those of Gauss, Gauss second, 

Kummer and Bailey for the series ,12F  Watson, Dixon, Whipple and 

Saalschütz for the series .23F  For the details of the generalized 

hypergeometric functions ,qpF  we refer, for example, to [5] and [8, Section 

1.5]. 

We recall the following two results due to Bailey [1]: 
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where ( )νλ  denotes the Pochhammer symbol defined ( ),,for C∈νλ  in 

terms of the familiar Gamma function Γ, by 
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Here and in the following, let ZRRC ,,, −+  and N  be the sets of complex 

numbers, positive real numbers, negative real numbers, integers, and positive 

integers, respectively, and, let 

{ }0:0 ∪NN =  and .\:0 NZZ =−  

It is interesting to observe that, in (1.1) and (1.2), if we replace x by      

α
x

 and let ,∞→α  after a little simplification, we get the following results 

which are also due to [1]: 
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The results (1.1), (1.2), (1.4) and (1.5) were established by Bailey [1] 

who used the following classical Kummer’s summation theorem (see, e.g., 

[5, 8]): 
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Choi and Rathie [2] presented the following generalizations of Bailey’s 

results (1.1), (1.2), (1.4) and (1.5): 
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and 
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where θ is given, here and in what follows, by 
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They [2] obtained the results (1.7)-(1.10) by using the following two 

summation formulas due to Qureshi et al. [4]: 
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Also, Choi and Rathie [2] proved (1.12) and (1.13) in an elementary way. 

Choi and Rathie [3] showed (1.9) and (1.10) in an elementary way without 

using (1.12) and (1.13). 
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Qureshi et al. [4] presented the following extensions of (1.9) and (1.10): 
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Sukanya et al. [6] established (1.14) and (1.15) in a very elementary way. 

Sukanya et al. [7] also proved (1.1) and (1.2) in a very elementary way 

without using Kummer’s summation theorem (1.6). 

Here, we aim to prove the results (1.7) and (1.8) in an elementary way 

without using the summation formulas (1.12) and (1.13). 

2. Derivations of (1.7) and (1.8) 

We establish the identity (1.7). To do this, let L  be the right-hand side of 

(1.7). First, we assume that x and α are real, 
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By using the binomial theorem (see, e.g., [8, p. 67, equation (22)]): 
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which, upon using the notation ,12F  is equal to the left-hand side of (1.7). 
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When x and α are complex numbers, by the principle of analytic 

continuation, (1.7) holds for suitable complex numbers x and α. This 

completes the proof of (1.7). 

The proof of (1.8) would run parallel to that of (1.7). So, its detailed 

account is left to the interested reader. 
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