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Abstract 

We aim to provide a new proof of the extended Watson’s summation 

theorem for the series 134F  due recently to Kim et al. [4]. Several 

interesting special cases of the extended Watson’s summation theorem 
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are also considered. We note that the method of proof used here is 

potentially useful in getting some other summation formulas for the 

series .qpF  

1. Introduction 

Throughout this paper, let qpF  denote the generalized hypergeometric 

series (see, for details, e.g., [1, 6], [7, Section 1.5]). Kim et al. [4] established 

extensions of various classical summation theorems for the series ,12F  23F  

and ,34F  two of which, for our present investigation, are recalled: 
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provided 12,\ 0 bacd R  and where 

141222:1 bac
d

ab
cbcbacac  

and .81
4

:2 ba
d

c  

The result (1.1) is an extension of the following classical Gauss’ second 

summation theorem (see, e.g., [1, p. 11], [6, p. 69] and [7, p. 350]): 
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and the result (1.2) is an extension of the following classical Watson’s 

summation theorem (see, e.g., [1, p. 16] and [7, p. 351]): 
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Here and in the following, each of denominator parameters in the qpF  is 

assumed to be nonzero. 

Kim et al. [4] established the summation formula (1.2) by using some 

results contiguous to Gauss’ second summation theorem obtained by Lavoie 

et al. [5]. Here, we provide a new proof of the extended Watson’s summation 

theorem (1.2). We also consider some interesting special cases of (1.2). For 

an interesting proof of the classical Watson’s summation theorem (1.4), the 

reader may be referred to [3]. 
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2. Derivation of (1.2) 

Let  be the left side of (1.2). Expressing 34F  as the series, we have 
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where n  is the Pochhammer symbol defined for  by (see [7, p. 2 

and pp. 4-6]): 
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where  is the familiar Gamma function. Here and in what follows, let ,  

and 0  be the sets of complex numbers, positive integers and non-positive 

integers, respectively, and let .0:0  Applying a known identity 

(see, e.g., [6, p. 49]) 
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to (2.1), we obtain 
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It easily follows from (2.2) that 
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Using (2.4), we get 
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Expressing 12F  in (2.3) as the series with the aid of (2.5), we obtain 
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Applying the following formal manipulation of double series (see, e.g., [2] 

and [6, p. 57, Lemma 11]): 
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in the resulting double infinite series, we have 
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Expressing the inner series in (2.7) as a ,23F  we get 
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Now, we can evaluate the 23F  series in (2.8) with the help of (1.1), after 

simplification, using Gauss’ second summation theorem (1.3), we arrive at 

the right side of (1.2). 

3. Special Cases of (1.2) 

Here, we consider some interesting and potentially useful special cases of 

(1.2). 

  (i) First, setting nb 2  and replacing a by na 2  and second, letting 

12nb  and substituting 12na  for 0na  in (1.2), we see 

that, in each case, one of the two terms on the right side of the resulting 

identities (1.2) will vanish. We thus have 
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 (ii) Also, setting 1
2

1
ad  and 12cd  in (3.1), respectively, 

we obtain the following summation formulas: 
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(iii) Further, setting 1
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We note that the identities (3.3)-(3.6) have been presented by Lavoie et 

al. [5] who employed other methods different from those used here. We also 

remark that the method of proof used here is potentially useful in getting 

some other summation formulas for the .qpF  
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