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NEW SERIES IDENTITIES FOR 1

Π

Mohammed M. Awad, Asmaa O. Mohammed, Medhat A. Rakha,

and Arjun K. Rathie

Abstract. In the theory of hypergeometric and generalized hypergeo-
metric series, classical summation theorems have been found interesting
applications in obtaining various series identities for Π, Π2 and 1

Π
. The

aim of this research paper is to provide twelve general formulas for 1
Π
.

On specializing the parameters, a large number of very interesting series
identities for 1

Π
not previously appeared in the literature have been ob-

tained. Also, several other results for multiples of Π, Π2, 1
Π2 ,

1
Π3 and

1√
Π

have been obtained. The results are established with the help of

the extensions of classical Gauss’s summation theorem available in the
literature.

1. Introduction

Roughly speaking, a generalized hypergeometric series to be a series
∑

Cn

with term ratio Cn+1

Cn

a rational function of n. In general it can be defined as

follows [2, 20, 23]

(1.1) pFq





a1, . . . , ap
; z

b1, . . . , bq



 =

∞
∑

n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

n!
,

where (a)n is the well known Pochhammer’s symbol (or the shifted or raised
factorial) defined for every complex number a by

(1.2) (a)n =

{

a(a+ 1) · · · (a+ n− 1), n ∈ N

1, n = 0.

The gamma function is defined by the Euler integral

(1.3) Γ (x) =

∫ ∞

0

ux−1e−udu

provided Re(x) > 0.
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In view of (1.3), (1.2) can be written as

(a)n =
Γ (a+ n)

Γ (a)
.

For p = 2 and q = 1, (1.1) can be reduced to the well known hypergeometric
series 2F1. For convergence conditions of pFq and 2F1 and for other properties,
we refer the standard texts [2, 20, 23].

In the theory of hypergeometric series 2F1 and generalized hypergeometric
series pFq, classical summation theorems such as those of Gauss, Gauss second,
Bailey and Kummer for the series 2F1; Watson, Dixon, Whipple and Saalschütz
for the series 3F2 and others play a key role.

Recently good progress has been done in generalizing and extending the
above mentioned classical summation theorems. For this, we refer the research
papers and books [11, 13, 14, 15, 19, 21, 24] and the references cited there in.

These classical summation theorems have been found applications in ob-
taining various series identities for Π,Π2 and 1

Π
. For this, we refer, interesting

papers and books [1, 4, 3, 5, 6, 7, 8, 9, 10, 12, 16, 17, 18, 22, 25, 26, 27, 28, 29]
and the references cited there in.

In 2013, Liu, et al. [17] have obtained the following interesting general series
identity

(2γ)2p
(

1+α
2

)

m

(

1+β

2

)

n

(

γ + 1−α
2

)

p−m

(

γ + 1−β

2

)

p−n

(α)2m (β)2n (γ)p
(

1
2
+ γ

)

p

(

γ + 1−α−β

2

)

p−m−n

×
∞
∑

k=0

(α)2m+k (β)2n+k (γ)p+k

k!
(

α+β+1
2

)

m+n+k
(2γ)2p+k

=

√
πΓ

(

1
2
+ γ

)

Γ
(

α+β+1
2

)

Γ
(

γ + 1−α−β

2

)

Γ
(

1+α
2

)

Γ
(

1+β

2

)

Γ
(

γ + 1−α
2

)

Γ
(

γ + 1−β

2

) ,(1.4)

where m,n, p ∈ N with p − m − n ≥ 0, by employing the following classical
Watson’s 3F2-summation theorem [2]

3F2





α, β, γ;
1

1
2
(α+ β + 1) 2γ





=

√
πΓ

(

1
2
+ γ

)

Γ
(

α+β+1
2

)

Γ
(

γ + 1−α−β

2

)

Γ
(

1+α
2

)

Γ
(

1+β

2

)

Γ
(

γ + 1−α
2

)

Γ
(

γ + 1−β

2

)(1.5)

provided Re(2γ − α− β) > −1.
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As special cases, they have deduced the following series identities for 1
Π
.

∞
∑

k=0

(

1
2

)

k

(

3
2

)

k

k! (k + 2)!
=

8

3π
,(1.6)

∞
∑

k=0

(

1
2

)

k

(

3
2

)

k+1

k! (k + 4)!
=

32

105π
,(1.7)

∞
∑

k=0

(

1
3

)

k

(

5
3

)

k

k! (k + 2)!
=

27
√
3

20π
,(1.8)

∞
∑

k=0

(

2
3

)

k

(

4
3

)

k

k! (k + 2)!
=

27
√
3

16π
,(1.9)

∞
∑

k=0

(

1
6

)

k

(

11
6

)

k

k! (k + 2)!
=

108

55π
,(1.10)

∞
∑

k=0

(

5
6

)

k

(

7
6

)

k

k! (k + 2)!
=

108

35π
,(1.11)

∞
∑

k=0

(

1
4

)

k

(

7
4

)

k

k! (k + 2)!
=

32
√
2

21π
,(1.12)

∞
∑

k=0

(

3
4

)

k

(

5
4

)

k

k! (k + 2)!
=

32
√
2

15π
,(1.13)

∞
∑

k=0

(

1
2

)

k

(

1
2

)

k

k! (k + 1)!
=

4

π
,(1.14)

∞
∑

k=0

(

1
3

)

k

(

2
3

)

k

k! (k + 1)!
=

9
√
3

4π
,(1.15)

∞
∑

k=0

(

3
4

)

k

(

1
4

)

k

k! (k + 1)!
=

8
√
2

3π
,(1.16)

∞
∑

k=0

(

5
6

)

k

(

1
6

)

k

k! (k + 1)!
=

18

5π
.(1.17)

Remark. The result (1.7) is a corrected form of the result given in [17].

Recently Mohammed et al. [18] pointed out that the above results (1.6) to
(1.17) which where deduced from a general result (1.4) due to Liu, et al. [17]
can be obtained very quickly by employing the following classical Gauss’s sum-
mation theorem [20]

(1.18) 2F1





a, b;
1

c



 =
Γ (c) Γ (c− a− b)

Γ (c− a) Γ (c− b)
,
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provided that Re(c− a− b) > 0.
A natural generalization of classical Gauss’s summation theorem (1.18) is

also available in the literature [19]
(1.19)

3F2





a, b, d+ 1
; 1

c+ 1, d



=
Γ (c+ 1)Γ (c− a− b)

Γ (c− a+ 1)Γ (c− b+ 1)

[

c− a− b+
ab

d

]

provided Re(c− a− b) > 0 and d 6= 0,−1,−2, . . ..
The aim of this research paper is to provide the natural extensions of the

results (1.6) to (1.17) by employing the extension (1.19) of classical Gauss’s
summation theorem. As special cases, we mention a large number of interesting
series for 1

Π
.

The results established in this paper are simple interesting, easily established
and may be potentially useful.

2. Main results

In this section, we shall establish twelve general series identities in the form
of three theorems.

Theorem 2.1. For d 6= 0,−1,−2, . . ., the following results holds true

(2.1) 3F2





1
2
, 5

2
, d+ 1

; 1
6, d



 =
2048

945π

[

2 +
5

4d

]

.

Theorem 2.2. For d 6= 0,−1,−2, . . ., the following results holds true

3F2





1
2
, 3

2
, d+ 1

; 1
4, d



 =
64

15π

[

1 +
3

4d

]

,(2.2)

3F2





1
3
, 5

3
, d+ 1

; 1
4, d



 =
729

√
3

320π

[

1 +
5

9d

]

,(2.3)

3F2





2
3
, 4

3
, d+ 1

; 1
4, d



 =
729

√
3

280π

[

1 +
8

9d

]

,(2.4)

3F2





1
6
, 11

6
, d+ 1

; 1
4, d



 =
23328

6545π

[

1 +
11

36d

]

,(2.5)

3F2





5
6
, 7

6
, d+ 1

; 1
4, d



 =
23328

5005π

[

1 +
35

36d

]

,(2.6)
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3F2





1
4
, 7

4
, d+ 1

; 1
4, d



 =
1024

√
2

385π

[

1 +
7

16d

]

,(2.7)

3F2





3
4
, 5

4
, d+ 1

; 1
4, d



 =
1024

√
2

315π

[

1 +
15

16d

]

.(2.8)

Theorem 2.3. For d 6= 0,−1,−2, . . ., the following results holds true

3F2





1
2
, 1

2
, d+ 1

; 1
3, d



 =
32

9π

[

1 +
1

4d

]

,(2.9)

3F2





1
3
, 2

3
, d+ 1

; 1
3, d



 =
81
√
3

40π

[

1 +
2

9d

]

,(2.10)

3F2





3
4
, 1

4
, d+ 1

; 1
3, d



 =
256

√
2

105π

[

1 +
3

16d

]

,(2.11)

3F2





1
6
, 5

6
, d+ 1

; 1
3, d



 =
1296

385π

[

1 +
5

36d

]

.(2.12)

Proof of theorems. The proof of the theorems (2.1) to (2.3) are quite straight
forward.

For this, in order to prove Theorem 2.1, if we take a = 1
2
, b = 5

2
and c = 5

in (1.19), we get after some simplification, the desired result of Theorem 2.1.
In exactly the same manner, the other theorems can be proved. �

3. Special cases

In this section, we shall mention a large number of new and interesting series
identities for 1

Π
from our main results.

(a) Results obtained from Theorem 2.1. For d = 5, we obtain the result

(3.1) 2F1





1
2
, 5

2

; 1
5



 =
512

105π
,

which is equivalent to the result (1.7) of Liu, et al. [17].
(b) Results obtained from Theorem 2.2.

(1) For d = 3 in (2.2), we obtain the result

(3.2) 2F1





1
2
, 3

2

; 1
3



 =
16

3π
,

which is equivalent to the result (1.6) of Liu, et al. [17].
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(2) For d = 3 in (2.3), we obtain the result

(3.3) 2F1





1
3
, 5

3

; 1
3



 =
27
√
3

10π
.

which is equivalent to the result (1.8) of Liu, et al. [17].
(3) For d = 3 in (2.4), we obtain the result

(3.4) 2F1





2
3
, 4

3

; 1
3



 =
27
√
3

8π
.

which is equivalent to the result (1.9) of Liu, et al. [17].
(4) For d = 3 in (2.5), we obtain the result

(3.5) 2F1





1
6
, 11

6

; 1
3



 =
216

55π
.

which is equivalent to the result (1.10) of Liu, et al. [17].
(5) For d = 3 in (2.6), we obtain the result

(3.6) 2F1





5
6
, 7

6

; 1
3



 =
216

35π
.

which is equivalent to the result (1.11) of Liu, et al. [17].
(6) For d = 3 in (2.7), we obtain the result

(3.7) 2F1





1
4
, 7

4

; 1
3



 =
64
√
2

21π
.

which is equivalent to the result (1.12) of Liu, et al. [17].
(7) For d = 3 in (2.8), we obtain the result

(3.8) 2F1





3
4
, 5

4

; 1
3



 =
64
√
2

15π
.

which is equivalent to the result (1.13) of Liu, et al. [17].

(c) Results obtained from Theorem 2.3.

(1) For d = 2 in (2.9), we obtain the result

(3.9) 2F1





1
2
, 1

2

; 1
2



 =
4

π
.

which is equivalent to the result (1.14) of Liu, et al. [17].
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(2) For d = 2 in (2.10), we obtain the result

(3.10) 2F1





1
3
, 2

3

; 1
2



 =
9
√
3

4π
.

which is equivalent to the result (1.15) of Liu, et al. [17].
(3) For d = 2 in (2.11), we obtain the result

(3.11) 2F1





3
4
, 1

4

; 1
2



 =
8
√
2

3π
.

which is equivalent to the result (1.16) of Liu, et al. [17].
(4) For d = 2 in (2.12), we obtain the result

(3.12) 2F1





1
6
, 5

6

; 1
2



 =
18

5π
.

which is equivalent to the result (1.17) of Liu, et al. [17].

All the previous special cases can also be found in [18, Table-1, P. 4]

4. Concluding remarks

In this research paper, first we have established twelve general series identi-
ties for 1

π
by employing extension of classical Gauss’s summation theorem and

afterwards, deduced a large number of elementary and new series identities for
1
π
.
By rewriting (1.19) in the following form

3F2





a, b, d+ 1
; 1

c+ 1, d





=
c

(c− a)(c− b)

[

c− a− b+
ab

d

]

2F1





a, b

; 1
c





=
c

(c− a)(c− b)

[

c− a− b+
ab

d

]

Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
(4.1)

provided Re(c − a − b) > 0 and d 6= 0,−1,−2, . . ., several other results for
multiples of Π, Π2, 1

Π2 ,
1
Π3 and 1√

Π
can be obtained. For example:

(1) If in (4.1), we put c = 7
2
, a = 1

2
and b = 3

2
, we have

3F2





1
2
, 3

2
, d+ 1

; 1
9
2
, d



 =
105Π

256

[

1 +
1

2d

]
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and by replacing d by 7
2
, we get

(4.2) 2F1





1
2
, 3

2

; 1
7
2



 =
15

32
Π.

(2) If in (4.1), we put c = 9
4
, a = 1

2
and b = 3

2
, we have

3F2





1
2
, 3

2
, d+ 1

; 1
13
4
, d



 =
5Π2

56Γ4
(

3
4

)

[

1 +
3

d

]

and by replacing d by 9
4
, we get

(4.3) 2F1





1
2
, 3

2

; 1
9
4



 =
5

24Γ4
(

3
4

)Π2.

(3) If in (4.1), we put c = 13
6
, a = 1

2
and b = 2

3
, we have

3F2





1
2
, 2

3
, d+ 1

; 1
19
6
, d



 =
91Γ3

(

1
3

)

120 3
√
2 Π2

[

1 +
1

3d

]

and by replacing d by 3
16
, we get

(4.4) 2F1





1
2
, 2

3

; 1
3
16



 =
455Γ3

(

1
3

)

216 3
√
2

1

Π2
.

(4) If in (4.1), we put c = 7
6
, a = 1

3
and b = 1

2
, we have

3F2





1
3
, 1

2
, d+ 1

; 1
13
6
, d



 =
21
√
3Γ4

(

1
3

)

240( 3
√
2)2 Π3

[

1 +
1

2d

]

and by replacing d by 7
6
, we get

(4.5) 2F1





1
3
, 1

2

; 1
7
6



 =

√
3Γ4

(

1
3

)

8( 3
√
2)2

1

Π3
.

(5) If in (4.1), we put c = 7
4
, a = 1

4
and b = 3

4
, we have

3F2





1
4
, 3

4
, d+ 1

; 1
11
4
, d



 =
21Γ2

(

3
4

)

16
√
Π

[

1 +
1

4d

]

and by replacing d by 7
4
, we get

(4.6) 2F1





1
4
, 3

4

; 1
7
4



 =
3Γ2

(

3
4

)

2

1√
Π
.
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