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Abstract

In the theory of generalized hypergeometric functions ,F,, among

other things, summation, transformation, and product formulas are
important. In the literature, there exist only a few results involving
square of generalized hypergeometric functions. The objective of this
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paper is to provide explicit expressions of three types of (IFI)2 in the

most general form. The results presented here are derived with the
help of generalizations of Kummer’s second theorem. We also
consider some special cases of the main results given here, one of
which is pointed out to be reduced to a known identity.

1. Introduction and Preliminaries

We begin by recalling the following well known and useful
transformation formulas due to Kummer [4]:

7 R Y Kt 1.1
¢ ), x| =ik b " (1.1)
and
) —; 2]
e‘x/le{ @ x}:ofq{ 1. (1.2)
2a; a+§, 16_

Bailey [1] proved (1.1) with the help of the classical Gauss’s summation
theorem (see, e.g., [2, 3, 7, 10]):

25[“’ i 1} ) EEE)—FE;);(? - 113 (%i(c —a~0)>0) (1.3)

and (1.2) by using the classical Gauss’s second summation theorem (see, e.g.,

[2]):

a, b: l“ll“la+lb+l
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Rathie and Choi [9] derived the following formula which is equivalent to
(1.2):
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by employing the Gauss’s summation theorem (1.3).
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From the theory of differential equations, Preece [5] obtained the
following well known and very useful identity involving the product of the
generalized hypergeometric functions:

P B Y B D B 1.6
1120;x112a;x—1za+§’2a;4- (1.6)

Bailey [1] re-derived the identity (1.6) by using the following classical
Watson’s summation theorem for 3 F5(1) (see, e.g., [10, p. 351]):

a, b, c;
F 1
372 %(a+b+l), 2c;
1 1 1 1 1 1 1 1
~ F(EJF(C +§)r(§a +§b +§)F(c —E(l - b +§)

2
B 1 1 1 1 1 1 1 1\’
F(Ea +§)r(5b +§jr(c —Ea +Ejr(c —§b+§)

provided R(2¢ —a —b) > —1.

(1.7)

We use the Kummer’s first transformation formula (1.1) to rewrite the
Preece’s identity (1.6) as follows:

<l E Rl Exlom 0 OE 1.8
¢ 112a;x.112a;x _120+§,2a;7’ (18)

or, equivalently,

a N? ; a, 2
{1Fi|:2a, X:|} =e 1F2 a +%’ 2(1’ T . (19)

Rathie [8] proved the Preece’s identity (1.8) very shortly by using the
following product formula due to Bailey [1]:

— —; l( +0) l( +o-1);
ofl] x|-0h ,X=2F329 »p\e “4x | (1.10)
> G, 0,0,0+0G—1;

and the Kummer’s second transformation formula (1.2). Rathie [8] also
presented the following two more results closely related to (1.8):
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Fl “xlEl @
X X
112a; 1]2a+l;

i a; 2 X a+l;x2
_ F rl__* _F 2L a1
¢ 122a,a+%; 4 2(2a+1)122a+1,a+%; 7| 41D

rl xlF©
x x
112a; 112a—1;

. a;xz x a;xz
=i 2a—l,a+%;7 +m1F2 2a,a+%;7 - (1.12)

and

Here, in this paper, we aim to provide explicit expressions of

- 2
a;
F x|t , 1.13
{1 1_2a+i; _} ( )
— . - 2
a;
{11’1 X } (1.14)
| 2a —i; |
and
o “xlF_° (1.15)
X X .
112a+i; 112a—i;

in the most general form for any non-negative integer i, by using the same
method as in Rathie [8]. For our purpose, we need to recall two general
results in [6], which are written here in the following slightly modified

forms:

a,
e_x/lel{ x}

2a + i
i . —_— 2
—i) (2a —1 m )
m:o(2a+i)m(a—§) m! 4 aTmTss
m
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and

a;
e_x/21Fl{ ) x}

2a — i,

:Z":(l)m( i), (2a =2 = 1), 3" e

— 0l 1 (1.17)
m=0(2a —i),, (a—z—%) m! 4" a+m—l+§, 16
m

for each i € N.

2. Main Results

Here we present two general formulas involving the square of the
generalized hypergeometric functions and one companion result asserted in
the following theorem.

Theorem 1. Each of the following formulas holds true for i € Ny :

o (), (0),Ca-1,Qa-1),
mz—;)nz—;) (a - %jm(a - %)n(za +1),,(2a + i), ™ ni22m+2n

l(2a+m+n+1),l(2a+m+n); 2
x B3| 2 2 =1 2.1)

1
a+m+§,a+n+§,2a+m+n;

{lﬂ{za s x}}z

_ ot x LG ()™ (=), (<), (2a = 2i = 1),,(2a = 2i = 1), x™*"
= ,;,% (a_i_%jm(a_l__) (2a—z) (2a_l) m!n!22m+2n

l(2ar+m-+-n—2i+1),l(2a+m+n—2i); 2
% o, X 2.2)

1 1 . 4
a+m—l+2,a+n—l+2,2a+m+n—21;
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and

(=1)"(=i),,(=1),(2a = 1),,(2a = 2i = 1), x™*"
%%(Q—Ejm(a—l——j (2a +1),,(2a - i), gmn

%(2a+m+n—i+1),l(2a+m+n—i); 2

1
a+m+2,a+n—z+§,2a+m+n—z

m! n!

Proof. For (2.1), it is sufficient to show the following statement:

a; 2
(P
2a +i;

(=),,(=1),(2a -1),,(2a - 1
)

2m+2n
m=0n= 0( 2) (a—z) (2a +1),,(2a +1i), m! n!2
m n

) xm+n
n

—1(2a+m+n+1),—1(2a+m+n); 2
2 x .
X o F3 ) —| (eNy. (24

1
a+m+§,a+n+§,2a+m+n;

Now, let £ be the left-hand side of (2.4) and be separated in the following

form:
_ ) —x/2 a, —-x/2 a,
L= {e IFI[Za ‘i x}} {e 1171[2(1 i x}} (2.5)

Applying (1.16) to each term of (2.5), we obtain

I ) e M N ME T
[e-3),(

2m+2n
nono(a ) (a —Ej (2a + i), (2a + i), mn2
n

) xm+n
n

. 2 . 2
> x > x
XOF]{a+m+%;E}OFlla+n+%;ﬁ}' (2.6)
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Using (1.10) for the product of two (£} in the right-hand side of (2.6), it is

easy to see that the £ is equal to the right-hand side of (2.1). This completes
the proof of (2.1).

The same argument as in the proof of (2.1) (here using (1.17) instead of
(1.16)) will establish the identities (2.2) and (2.3). So the details of their
proofs are omitted. [

3. Special Cases and Concluding Remark

Here we consider some special cases of our main results in Theorem 1
and give a remark for a possible further research related to the present
investigation.

(1) In (2.1), (2.2), or (2.3), if we take i = 0, then we immediately recover
the Preece’s identity (1.9).

(2) Taking i =1 in (2.1) yields the following result:

. 2
F a’x
{1 1{2(14—1; }}

a, 2 a+1; 2
_ X x| X > xT
‘e{leL+%,2a; 4] 2a+11F2L+3,2a+1; 4]

2

2 a+1; ¥2
+—15 3 =t (3.1)
4(za+1)2 a+§,2a+2, 4

(3) Taking i =1 in (2.2) yields the following result:

{lﬂ{za —C; x}}z

a-1; 2 a, 2
_ X > X7 X T X7
_e{lel:a—%,Za—Z 4}+2a—11F2{a+%,2a—l; 4:|

2 a, 2
X > X
+—1 1 = ¢ (3.2)
4(2a _ 1)2 |:a + R 2a; 4 :l}
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(4) Taking i =1 in (2.3), we get the following result:

o “x|\Fl®
X X
112a+l; 11Za—l;

. a; x2 a; xz
- ' |F F X
e a+%,2a—1, 4| 2@a -2 a+%,2a, 4

a a-l—l‘ 2

S S A

22a+27 13 4

2, 27 b
2 a+1; 2

X
_4(2a—1)(2a+1)1F2 a+%,2a+1;7 (3-3)

We conclude this paper by noting that, using these general formulas

presented here, we may obtain two further general transformation formulas

for the double hypergeometric functions such as (for example) Srivastava

and Panda’s double hypergeometric functions (see, e.g., [11, p. 27]).
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